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Abstract 
 
New records for the adventive species Monoxia obesula Blake (Coleoptera Chrysomelidae Galerucinae) in the Mediterranean re-
gion are reported. An Ecological Niche Modeling (ENM) analysis to estimate the potential distribution of this leaf beetle in the 
secondary range, through the assessment of the habitat suitability, was performed. The expected distribution, as predicted by the 
ENM analysis, is rather limited in the Mediterranean region, with high suitability areas only in southern Spain, Sardinia, Sicily, 
southern peninsular Italy, Tunisia and Egypt. Nevertheless, the Ensemble Models for future climatic conditions predict an expan-
sion from all the currently suitable territories of the Mediterranean region, especially in coastal areas. 
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Introduction 
 
Alien and adventive species are major threats to many 
natural and human-managed ecosystems, in terms of 
biodiversity conservation (Crowl et al., 2008; Bellard et 

al., 2016; Gilioli et al., 2017), socio-economic costs and 
management efforts (Williams et al., 2010; Oreska and 
Aldridge, 2011; Early et al., 2016). The successful es-
tablishment of an invasive alien species depends on 
many environmental variables, which can be summa-
rized in the BAM diagram (Soberon and Peterson, 
2005); the research in this field is very active, and many 
analytical approaches are used. 

In this context, Ecological Niche Models (ENMs) 
gained more and more popularity during last years, be-
cause of their capability of predicting suitable areas 
outside the known distribution range of the target spe-
cies (Ficetola et al., 2009; Mainali et al., 2015; Tauca-
re-Ríos et al., 2016; da Silva et al., 2017). Once cali-
brated on the native range of the adventive species, the 
ENMs can map the areas considered suitable, usually 
with a continuous distribution of predicted suitability; 
this can be obtained through presence-only records 
(GPS points from the field, museum records, online 
databases), which can be also integrated with the more 
difficult-to-collect absence data (Urbani et al., 2015; 
2017). The variables commonly used to model species’ 

distribution are the climatic (temperature and precipi-
tation) (D'Alessandro et al., 2018; Iannella et al., 
2018a; 2018b), topographic (altitude, aspect and slope) 
(Cerasoli et al., 2017; Iannella et al., 2017; Di Musci-
ano et al., 2018) and many others, such as edaphic 
maps, land use, etc. (Pérez-García et al., 2017; Midzi 
et al., 2018). In particular, the so-called “bioclimatic” 

variables are commonly used because of the primary 
influence that climate exerts over species, especially 
for ectotherms; these variables are freely available on 
online repositories (Hijmans et al., 2005; Kriticos et 

al., 2012; Karger et al., 2017) and describe climate   

for the current and possibly infer past and future sce-
narios. 

In this work, the possible distribution of Monoxia 

obesula Blake (Coleoptera Chrysomelidae Galerucinae) 
(figure 1), a leaf beetle belonging to the tribe Galeruc-
ini, was investigated. It was first recorded as adventive 
to the Mediterranean area (Sardinia, Italy) in 2014 
(Clark et al., 2014) and in 2016 a second find was re-
ported from Malta (Mifsud, 2016). The most recent rec-
ords are from Balearic Islands (Petitpierre et al., 2017) 
and eastern Spain (Valencia Province) (Montagud Alar-
io and Rodrigo Coll, 2017). In this contribution, we 
supply new data records for the secondary range of M. 

obesula and perform an Ecological Niche Modeling 
(ENM) analysis for predicting the potential extension of 
this species in the Mediterranean area, through the as-
sessment of the habitat suitability. 
 
 
Materials and methods 
 
Material examined 

Specimens were examined and dissected using a Leica 
M205C binocular microscope. Photomicrographs were 
taken using a Leica DFC500 camera and the Zerene 
Stacker software version 1.04. Scanning electron micro-
graphs were taken using a Hitachi TM-1000. Geograph-
ical coordinates of the localities were reported in de-
grees, minutes and seconds (DMS-WGS84 format); co-
ordinates and geographical information that are included 
in square brackets were added by the authors using in-
formation from the web site of Google Earth. 
 
Dataset and study area 

M. obesula localities are summarized in table 1; all 
these occurrences were used to generate the ENMs, as 
described below. The whole study area for our analyses 
can be defined as the sum of primary (North America) 
and secondary range (Mediterranean region). 
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Figure 1. M. obesula: habitus; aedeagus in ventral, dorsal and lateral view; spermatheca and vaginal palps. 
 
 
Ecological Niche Modeling (ENM) 

Nineteen bioclimatic variables were downloaded from 
the Worldclim.org online repository, at a spatial resolu-
tion of 30 arc-seconds, for ‘current’ climatic conditions 

(Hijmans et al., 2005); codes and names for each variable 
are reported at the end of this paper (appendix). Consider-
ing that some differences exist among the projections of 
the future in available Global Climate Models (GCMs), 
we chose the CCSM4 (Gent et al., 2011), IPSL (Marti et 

al., 2010) and MIROC-CHEM (Watanabe et al., 2011) 
GCMs to perform the future projections, and then merged 
each resulting model into a single one (see below). 

To avoid any multicollinearity-related bias in the 
models, a correlation matrix among all these candidate 
predictors was built through the ‘Band Collection Statis-

tics’ tool in ArcMap 10.0 (ESRI, 2010); when a pair of 

variables exceeded a Pearson’s value of |r| > 0.85 (Elith 

et al., 2006), the less ecologically-influenced variable 
was discarded from the modeling process, based on 
available information on the target species or consider-
ing an expert-based procedure, for all the reasons re-
ported in Brandt et al. (2017). 

Models for the target species were built through the 
‘biomod2’ package (Thuiller et al., 2016) in R environ-
ment (R Core Team, 2016). This modeling technique is 
considered particularly powerful because it can combine 
different modeling approaches (ranging from linear 
models to machine-learning techniques) into one single 
Ensemble Model (EM). The modeling techniques used 
in our analyses were Generalized Linear Models 
(GLMs), Multiple Adaptive Regression Splines 
(MARS), Gradient Boosted Models (GMB, also known 
as Boosted Regression Trees, BRTs) and Maxent. Mod-
els built for M. obesula were parametrized as follows: 
General Linear Models (GLM): type = 'quadratic', inter-
action level = 3; Multiple Adaptive Regression Splines 
(MARS): type = 'quadratic', interaction level = 3; Gener-

alized Boosting Model (GBM): number of trees = 10000, 
interaction depth = 3, cross-validation folds = 10; 
maxent (MAXENT.Phillips): maximum iterations = 
5000. Pseudo-absences were selected through a Surface 
Range Envelope (‘sre’), with a quantile set to = 0.05. 

Five sets of 500 pseudo-absences each were generated 
for each modeling technique, for a total of 100 single 
models, and model calibration was performed by using 
the “BIOMOD_Modelling” function for the whole study 

area. 
To obtain reliable EMs, the discrimination perfor-

mances of each model were assessed through the True 
Skill Statistics (TSS) (Allouche et al., 2006) and the Ar-
ea Under the Curve of the receiver operator characteris-
tics curve (Phillips et al., 2006), choosing only models 
with TSS > 0.85 and AUC > 0.75, for all the reasons 
reported in Iannella et al. (2018b). 

The best performing models were then combined to ob-
tain the EMs through the “BIOMOD_EnsembleModeling” 

function (using the ‘wmean’ algorithm, a function 

which proportionally combines single models based on 
their respective discrimination scores), and the “BIO-

MOD_EnsembleForecasting” function was used to ob-

tain predictions on the target species’ secondary range. 

A further analysis was performed through this function 
to model possible future scenarios: two 2050 future pro-
jections were performed, for the 6.0 and the 8.5 Relative 
Concentration Pathways (RCPs) scenarios. The differ-
ences between these two RCPs are linked to the radia-
tive forcing increase forecast taking into account the end 
of greenhouse gas emissions, with the first peaking in 
2080 and the second not ending at least until 2100 
(Meinshausen et al., 2011; Riahi et al., 2011). Models 
obtained from the three different GCMs used were com-
bined using the Multivariate Environmental Dissimilarity 
Index (MEDI) (Iannella et al., 2017), an algorithm which 
can proportionally combine projections from different 
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Table 1. Records of M. obesula in primary and secondary range. 
 

Locality 
Latitude Longitude Host plant Date Source 

Primary Range    
USA, Nebraska, Arbor Lake 

40°54'0.1"N 96°40'52.9"W 
Atriplex dioica 

Chenopodium sp. 2-7.xi.2013 Clark et al., 2014 

USA, Nebraska, Waverly 
[40°55'10.33"N 96°31'39.20"W] Chenopodium sp. 13.xi.1923 Clark et al., 2014 

USA, Texas, Kingsville 
[27°30'57.13"N 97°51'21.99"W] Chenopodium sp. 12.v.1909 Clark et al., 2014 

Dubitative Primary Range    
USA, Maryland, Dundalk 

[39°15'17.47"N 76°31'11.98"W] Chenopodium sp. 21.viii.1991 Clark et al., 2014 

Secondary Range    
*Italy, Latium (RM), Ostia 

[41°43'41.77''N 12°17'23.41''E] Unknown 18.xi.2018 G. Pace leg. 

*Italy, Sardinia (CA), Poetto Beach 
[39°12'29.48"N 9°10'1.68"E] Unknown 29.vii.2012 D. Sechi leg. 

Italy, Sardinia (CA), Stagno di Molentargius 
[39°12'24.94''N 9°8'55.03''E] 

Atriplex halimus 

A. portulacoides 
2.viii.2013 Clark et al., 2014 

*Italy, Sardinia (CA), Villanova 
[39°12'42.75"N 9°7'0.63"E] Unknown 23.vii.2016 G. Ruzzante leg. 

*Italy, Sardinia (OG), Marina di Tertenia 
[39°41'35.51"N 9°39'24.14"E] Unknown 22.viii.2014 A. Carlin leg. 

*Italy, Sicily, Catania 
37°31'18.08"N 15°5'38.26"E Chenopodium album 20.xi.2018 S. Longo leg. 

Malta, St. Thomas Bay 
[35°50'59.01"N 14°33'54.98"E] Chenopodium album 30.xi.2015 Mifsud, 2016 

Spain, Balearic Islands, Mallorca, Es Carnatge 
[39°32'34.41"N 2°42'14.52"E] Atriplex halimus x.2015 Petitpierre et al., 2017 

*Spain, Balearic Islands, Mallorca, near Cala Ratjada 
[39°42'27.58"N 3°27'33.57"E] Unknown 24.v.2018 M. Becker leg. 

Spain, Castellón, Grau de Castelló 
39°58'44.15"N 0°1'20.64"E Atriplex halimus 20.vii.2017 Montagud Alario and Rodrigo Coll, 2017 

Spain, Valencia, Campus de Burjassot 
39°30'34.31"N 0°25'29.46"W Atriplex halimus 25.vii.2017 Montagud Alario and Rodrigo Coll, 2017 

Spain, Valencia, El Arenal 
39°37'48.65"N 0°18'0.94"W Atriplex halimus 28.vii.2017 Montagud Alario and Rodrigo Coll, 2017 

Spain, Valencia, Jardin del Túria (1) 
39°28'40.84"N 0°23'21.01"W Atriplex halimus 12.vii.2017 Montagud Alario and Rodrigo Coll, 2017 

Spain, Valencia, Jardin del Túria (2) 
39°27'18.90"N 0°20’50.82"W Atriplex halimus 12.vii.2017 Montagud Alario and Rodrigo Coll, 2017 

Spain, Valencia, Polideportiva 
39°30'22.93"N 0°25'3.86"W Atriplex halimus 28.vii.2017 Montagud Alario and Rodrigo Coll, 2017 

Spain, Valencia, Saplaya 
39°31'34.86"N 0°18'50.98"W Atriplex halimus 28.vii.2017 Montagud Alario and Rodrigo Coll, 2017 

 

(*) New records. 
 
 
GCMs depending on the MESS scores (Elith et al., 2010) 
they reached, thus reducing the models’ extrapolation. 

The MEDI-processed models were further binarized 
(presence/absence) using a threshold, obtained by averag-
ing a TSS-max for all Ensemble Models through the 
‘ecospat’ package (Di Cola et al., 2017). This technique 
is particularly reliable when dealing with presence-only 
models, as it permits obtaining of results comparable with 
the presence/absence models (Liu et al., 2013). The cur-
rent and future binarized models were compared through 
the “BIOMOD_RangeSize” function, which calculates 

the possible areas of gain, stability and loss between 
certain climatic scenarios; in our case, ‘current’ versus 

‘2050_RCP 6.0’ and ‘current’ versus ‘2050_RCP 8.5’ 

predictions were assessed. 
 

Results 
 
M. obesula is associated with the plant family Amaran-
thaceae s.l. (including the former family Chenopodi-
aceae) (The Angiosperm Phylogeny Group, 2016) both 
in its primary (North America) (figure 2a) and second-
ary (southern Europe) (figure 2b) range. In particular, 
this leaf beetle species completes its entire life cycle on 
Atriplex spp., mainly Atriplex halimus L., and, to a 
lesser extent, on Chenopodium spp., mainly Chenopo-

dium album L. (table 1). The introduction of M. obesu-

la in the Mediterranean area could prove alarming be-
cause it causes serious damages to its host plants, suffi-
cient to cause death, through heavy defoliations (Clark 
et al., 2014; Mifsud, 2016; Montagud Alario and Ro-
drigo Coll, 2017). M. obesula seems to be spread by 
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Figure 2. a) M. obesula primary range; b) M. obesula secondary range (with the corresponding occurrence year) and its 

host plant A. halimus Mediterranean range; c) M. obesula predicted habitat suitability for current climatic conditions. 
 
 
ornamental plants. In this regard, an important role in 
its propagation is probably also played by the other 
host plant, C. album, which is common and widespread 
in the Mediterranean area. 

The new data records of M. obesula in the Mediterra-
nean region involve five areas of Italy and one in Spain 
(table 1, figure 2b). Particularly relevant are two records 
from Italy: Sicily, Catania (via Sassari), 37°31'18"N 
15°5'38"E, 38 m a.s.l., 20.xi.2018, S. Longo leg., on 
Chenopodium album (Amaranthaceae); Latium, Ostia 
(Rome), 41°43'41.77"N 12°17'23.41"E, 1 m a.s.l., 
18.xi.2018, 1 specimen, G. Pace leg.. These extend the 

secondary range of this species to Sicily and peninsular 
Italy. 

The Ensemble Models reached high scores of both 
TSS (= 0.933) and AUC (= 0.986) and describe an in-
teresting potential distribution for M. obesula in the 
Mediterranean area (figure 2c). We can observe that the 
potential distribution estimated by the ENM analysis for 
this adventive species is rather limited in the Mediterra-
nean region, with the most contributive variables BIO8 
(Mean Temperature of Wettest Quarter, 34% of the total 
contribution) and BIO12 (Annual Precipitation, 18%) 
respectively. For many of the expected suitability areas, 
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M. obesula has been already reported (table 1), while 
new records could still come from some areas of Spain, 
such as the Cabo de Gata area and Almeria Gulf on the 
eastern coast, or from the Atlantic coast facing the Ca-
diz Gulf. Within Italy, we expect a wider spread in Sar-
dinia, especially on the eastern coast, and in Sicily, in 
particular in the north-western area and on the northern 
coast. With regard to peninsular Italy, the ENM returns 
some areas with elevated habitat suitability in the 
coastal area of the southern Calabria (Capo Spartivento 
area) and further North in the Sibari Plain, while in 
Apulia, several areas are “turned on” by the EM in the 

Salentinian Peninsula. It is interesting also to highlight 
that, notwithstanding the record of the Latium coast 
(Ostia), this area represents no particularly high suitabil-
ity habitats for the presence of this leaf beetle species. 
Also, we have to underline other two potentially suitable 
areas for M. obesula in North Africa, namely the eastern 
coast of Tunisia (Sfax and Sharqui Island) and the Medi-
terranean coast of Egypt, approximately between Port 
Said and Alexandria. The suitable distribution of M. 

obesula, as predicted by the models, is strictly limited to 
areas with Mediterranean conditions; that could seem 

strange considering that this species is occurring also in 
Nebraska. However, in the two sites from Nebraska 
considered for the analysis, the most contributive varia-
bles, BIO8 and BIO12 respectively, show values falling 
perfectly in the range of the Mediterranean sites [BIO8 
(°C) = 21.6 (site 1) and 21.8 (site 2), "Mediterranean" 
range 13.3-26.7; BIO12 (mm) = 748 (site 1) and 766 (site 
2), "Mediterranean" range = 374-1101]. 

More importantly, the future potential distributions 
resulted in two scenarios of increased suitability, as re-
ported in the range-shift maps of figure 3 (obtained af-
ter the binarization, with a TSS-max threshold = 0.16). 
Comparing the distributions, the range shift for 
2050_RCP 6.0 from current scenario (figure 3a) shows 
a great increase of suitable areas in many territories al-
ready predicted for current climatic conditions; a simi-
lar result, but with a greater increase with respect to  
the RCP 6.0, is also forecast for the 2050_RCP 8.5 
(figure 3b). In both range shift maps, the gain of suita-
ble area is observed in spatial continuity with respect to 
the current predictions (the “stable” areas), and many 

“coastal” corridors could be available in the future for 

the target species. 
 
 

 
 

Figure 3. Range shifts of predicted areas of suitability for a) current climatic conditions versus 2050_RCP 6.0 and  
b) current climatic conditions versus 2050_RCP 8.5 for M. obesula secondary range. 
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Discussion and conclusions 
 
The Ensemble Model for current climatic conditions 
matches the occurrences’ distribution found for           
M. obesula across its secondary range, thus some con-
siderations about its current potential invasiveness can 
be made. Considering that many coastal Mediterranean 
areas outside the target species’ current range are pre-

dicted with high suitability, it is likely that its future in-
troduction could favour the establishment in some Span-
ish and north African areas. This scenario is also fa-
voured by the presence of the primary, A. halimus, and 
secondary, C. album, host plants, which occur through-
out the areas predicted by the current EM. Further, the 
range shifts observed for both the RCPs of 2050 EMs 
are consistent with a hypothesis M. obesula spread in 
the Mediterranean area, considering that A. halimus co-
vers (figure 2b) the entire range of predicted gain and 
stable areas for future climatic conditions. 
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Appendix 
The set of the nineteen bioclimatic variables considered as candidate predictors (from Worldclim.org), with their 

codes and explication. In bold, the variables selected as predictors for the Ecological Niche Modeling. 
 

BIO1 = Annual Mean Temperature 
BIO2 = Mean Diurnal Range [Mean of monthly (max temp – min temp)] 

BIO3 = Isothermality (BIO2/BIO7)*100 

BIO4 = Temperature Seasonality (standard deviation*100) 

BIO5 = Max Temperature of Warmest Month 

BIO6 = Min Temperature of Coldest Month 

BIO7 = Temperature Annual Range (BIO5-BIO6) 

BIO8 = Mean Temperature of Wettest Quarter 

BIO9 = Mean Temperature of Driest Quarter 

BIO10 = Mean Temperature of Warmest Quarter 
BIO11 = Mean Temperature of Coldest Quarter 
BIO12 = Annual Precipitation 

BIO13 = Precipitation of Wettest Month 
BIO14 = Precipitation of Driest Month 
BIO15 = Precipitation Seasonality (Coefficient of Variation) 

BIO16 = Precipitation of Wettest Quarter 
BIO17 = Precipitation of Driest Quarter 

BIO18 = Precipitation of Warmest Quarter 
BIO19 = Precipitation of Coldest Quarter 

 




