New Australasian species from subgenus Eusynaldis of the genus Aspilota Foerster 1863 (Hymenoptera, Braconidae, Alysiinae) with a key to World species

Francisco Javier PERIS-FELIPO¹, Sergey A. BELOKOBYLSKIJ²³
¹Basel, Switzerland
²Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia
³Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa, Poland

Abstract

Key words: Braconidae, parasitoid, Eusynaldis, Australasia, new species, key.

Introduction

The subgenus Eusynaldis Zaykov et Fischer 1982 (including Regetus Papp 1999 and Adelphenaldis Fischer 2003) (Zhu et al., 2017) of the genus Aspilota Foerster 1863 is composed of 32 species distributed in almost all zoogeographic regions except the Neotropical one. Originally the most part of current Eusynaldis species were mainly included in the genera Regetus and Adelphenaldis (Papp, 1999; Fischer, 2003). However, due to the revision of the types and the study of numerous additional materials, the two last generic names were synonymized with Eusynaldis, which had been treated as subgenus of Aspilota (Zhu et al., 2017).

In the present work, a new species from Papua New Guinea, Aspilota (Eusynaldis) villementae sp. nov., is described and illustrated. A key for determination of the World Eusynaldis species with new generic combinations is provided.

Materials and methods

Specimens were collected with Malaise traps during the expedition “Our Planet Reviewed - Papua New Guinea” carried out from 25 October to 10 November 2012 at eight sites placed every 500 m along an altitudinal transect set up on the north-eastern face of Mt Wilhelm and at Wanang (Swire) Research Station (175 m a.s.l.), a lowland forest distant of 63 km north of Mt Wilhelm. At each sampling site, four Malaise traps were set up every 100 m following the same contour line. The captures were preserved with 90% ethyl alcohol (Robillard et al., 2016).

For the terminology of morphological features, sculpture and measurements, see Peris-Felipo et al. (2014a); for wing venation nomenclature, see van Achterberg (1993); for measurements of the marginal cells, see van Achterberg (1993); for measurements of the marginal cells, see van Achterberg (1993); for measurements of the marginal cells, see van Achterberg (1993); for measurements of the marginal cells, see van Achterberg (1993). Material was imaged using a Digital Microscope Keyence® VHX-2000 and Adobe Photoshop® imaging system. The types of a described species are deposited in the collection of the Muséum National d’Histoire Naturelle (Paris, France; MNHN) and the Zoological Institute of the Russian Academy of Sciences (St Petersburg, Russia; ZISP).

Taxonomic part

Order Hymenoptera L. 1758
Family Braconidae Nees 1811
Subfamily Alysiinae Leach 1815
Tribe Alysiini Leach 1815
Genus Aspilota Foerster 1863
Subgenus Eusynaldis Zaykov et Fischer 1982
Figure 1. *Aspilota (Eusynaldis) varinervis* (Zaykov et Fischer 1982) (male, holotype). A. Habitus, lateral view. B. Head and mesosoma, lateral view. C. Mandible. D. Antenna. E. Head, front view. F. Head and mesonotum, dorsal view.

Figure 2. *Aspilota (Eusynaldis) varinervis* (Zaykov et Fischer 1982) (male, holotype). A. Propodeum, dorsal view. B. First metasomal tergite, dorsal view. C. Hind leg, lateral view. D. Fore wing.

Type species: *Eusynaldis varinervis* Zaykov et Fischer 1982, by monotypy (figures 1, 2).

Diagnosis: Subgenus *Eusynaldis* has main diagnostic characters of *Aspilota* s. tr. (long paracylpeal fovea reaching inner border of eye, mandible with three teeth and without transverse curved carina), but with main difference from the later in the vein 2-SR of fore wing which is always absent.

Remarks: *Regetus* and *Adelphenaldis* are junior synonyms of *Eusynaldis* because all three taxa are characterized by the same generic diagnostic features (Zhu *et al.*, 2017). Moreover, the careful study of the holotype of *Regetus balcanicus* Papp 1999 clearly showed that this species is a junior synonym of *Aspilota (Eusynaldis) globipes* (Fischer 1962) (syn. nov.).

Hosts: Perhaps the members of the families Phoridae and Platypezidae (Diptera) as well as in some species of subgenus *Aspilota* s. str. (Zhu *et al.*, 2017).

Aspilota (Eusynaldis) villementa Peris-Felipo, sp. nov. (figures 3, 4)

Type material

Paratypes: 1 female, same data as holotype (ZISP); 1 female, same locality as holotype but, 25–26.v.2013, site: MW0700-03, P4745, vial: 20602, MAL-MW0700’C-13/16-d13 (MNHM).

Description
Female (holotype)

Head - In dorsal view, 2.0 times as wide as long, 1.5 times as wide as mesoscutum, smooth, with temple rounded behind eyes. Eye in lateral view 1.4 times as high as wide and 1.5 times as wide as temple mediially. POL equal to OD; OOL 2.7 times OD. Face 1.3 times as wide as high, with spared setae; inner margins of eyes subparallel. Clypeus 2.3 times as wide as high, slightly concave ventrally. Paracylpeal fovea long, reaching inner border of eye. Mandible almost parallel-sided, 1.6 times as long as its maximum width. Upper tooth very small; middle tooth rather narrow and short, directed weakly upwards; lower tooth small, with several long outstanding curved setae. Antenna 21-segmented, 0.9 times as long as body. Scape 2.2 times as long as pedicel. First flagellar segment 3.4 times as long as its apical width, 1.3 times as long as second segment. Second flagellar segment 2.0 times, third segment 1.8 times, fourth to 19th (apical segment) 1.6-1.7 times as long as their maximum width.

Mesosoma - In lateral view 1.3 times as long as high. Mesoscutum (dorsal view) about as long as its maximum width, smooth. Notauli in horizontal surface of mesonotum absent. Mesoscutal pit absent. Prescutellar depression smooth, with median and lateral carinae, 1.5 times as long as its maximum width. Precoxal sulcus present, crenulate, not reaching anterior and posterior margins of mesopleuron. Posterior mesopleural furrow smooth. Propodeum with longitudinal carinae running from basal to subapical part when fused with short and angulated semi-round posterior area, basolateral areas smooth. Propodeal spiracles large, their diameter 0.4 times as large as distance from spiracle to anterior margin of propodeum.

Wings - Length of fore wing 2.5 times its maximum width. Marginal cell ending on apex of wing, 3.9 times as long as its maximum width. Hind wing 7.3 times as long as its maximum width.

Legs - Hind femur 4.5 times as long as its maximum width. Hind tibia weakly widened to apex, 6.9 times as long as its maximum subapical width, about as long as hind tarsus. First segment of hind tarsus 1.8 times as long as second segment.

Metasoma - First tergite curvedly widened towards apex, 2.2 times as long as its maximum subapical width, sparsely striate in apical half, finely rugulose in basal median half. Ovipositor 1.2 times as long as first tergite, 0.5 times as long as metasoma, 0.8 times as long as hind femur. **Colour** - Body, flagellar segments of antenna and pterostigma brown to dark brown. Mandible and legs light brown. First metasomal tergite similar colour to second and third tergites. Wings almost hyaline.

Length - Body 1.7 mm, fore wing 2.0 mm, hind wing 1.3 mm.

Variation - Body 1.7-1.9 mm, fore wing 2.0-2.1 mm, hind wing 1.3-1.4 mm.

Male

Unknown.

Etymology

Comparative diagnosis

This new species is similar to *A. (E.) mesoafricanus* (Peris-Felipo 2014), comb. nov. from Kenya (Peris-Felipo *et al.*, 2014b) by propodeum without areola, mesoscutal dorsal pit absence, and rather long mandible, hind femur and first metasomal tergite. This new species differs from it in having the first flagellar segment 3.4 times as long as its maximum width (2.8 times in *A. mesoafricanus*), head in dorsal view 1.8 times as long as wide (1.5 times in *A. mesoafricanus*), eye in lateral view 1.5 times as wide as temple medi ally (1.0 times in *A. mesoafricanus*), and face 1.3 times as long as high (2.0 times in *A. mesoafricanus*).
Figure 3. *Aspilota (Eusynaldis) villemantae* Peris-Felipo, sp. nov. (female, holotype). A. Habitus, lateral view. B. Head and mesosoma, lateral view. C. Mandible. D. Antenna. E. Head, front view. F. Head and mesonotum, dorsal view.

Figure 4. *Aspilota (Eusynaldis) villemantae* Peris-Felipo, sp. nov. (female, holotype). A. Propodeum, dorsal view. B. First metasomal tergite, dorsal view. C. Hind leg, metasoma and ovipositor, lateral view. D. Fore and hind wings.
Key to the World species of Aspilota (Eusynaldis)

1 - Propodeum with rather large median areola, distinctly delineated by cariniae ... 2
 -- - Propodeum without areola, only sometimes with short semi-round posterior area ... 17

2(1) - Hind wing without medial and submedial cells. Body length 1.3 mm. India ... 6
 -- - Hind wing with medial and submedial cells. Body length 1.5 mm. India .. 3

3(2) - Propodeal spiracles large, their diameter equal or almost equal to distance from spiracle to base of propodeum 4
 -- - Propodeal spiracles small, their diameter distinctly less than distance from spiracle to base of propodeum 10

4(3) - First metasomal tergite linearly striate at least in apical half ... 5
 -- - First metasomal tergite smooth or irregularly sculptured, never linearly striate ... 6

5(4) - First metasomal tergite 3.3 times as long as its apical width. Hind femur 4.0 times as long as its maximum width. Body length 1.5 mm. India .. A. (E.) gigascapus (Fischer), comb. nov.
 -- - First metasomal tergite 2.2-2.4 times as long as its apical width. Hind femur 3.0-3.3 times as long as its maximum width. Body length 2.0-2.3 mm. Russia (Far East) A. (E.) moniliata (Belokobylskij), comb. nov.

6(4) - First flagellar segment long, 2.7-3.5 times as long as its width ... 7
 -- - First flagellar segment short, 1.2-2.0 times as long as its width .. 9

7(6) - First flagellar segment 2.7 times as long as its maximum width. First metasomal tergite 2.3 times as long as its apical width. Body length 1.7 mm. Korea .. A. (E.) correcta (Papp), comb. nov.
 -- - First flagellar segment 3.2-3.5 times as long as its maximum width. First metasomal tergite 2.6-2.7 times as long as its apical width .. 8

8(7) - Mandible 1.5 times as long as width. Mesosoma 1.3 times as long as high. Hind femur 3.6-3.8 times as long as its maximum width. Body length 1.8-2.2 mm. Russia (Far East) A. (E.) spasskensis (Belokobylskij), comb. nov.
 -- - Mandible 1.7-2.0 times as long as its maximum width. Mesosoma 1.05-1.10 times as long as high. Hind femur 3.0-3.5 times as long as its maximum width. Body length 1.5-1.7 mm. Russia (North-West of the European part), Spain ... A. (E.) spiritus (Tobias), comb. nov.

9(6) - Scape as long as first flagellar segment. First flagellar segment 2.0 times as long as its maximum width. Mandible 2.0 times as long as its maximum width. Body length 1.8 mm. USA A. (E.) trematosa (Fischer), comb. nov.
 -- - Scape about 0.7 times as long as first flagellar segment. First flagellar segment 1.5-1.7 times as long as its maximum width. Mandible 1.50-1.85 times as long as its maximum width. Body length 1.1-1.5 mm. Bulgaria, China, Czech Republic, Georgia, Hungary, Italy, the Netherlands, Poland, Russia, Spain, Sweden .. A. (E.) globipes (Fischer) (Synnalis Georgica Fischer; Regetus balcanicus Papp, 1999, syn. nov.)

10(3) - First flagellar segment 1.2 times as long as its maximum width. Body length 1.6-1.8 mm. Austria, Bulgaria, China, Finland, Germany, Hungary, Russia (Far East), Sweden, Switzerland A. (E.) parvicornis (Thomson)
 -- - First flagellar segment 2.5-5.0 times as long as its width .. 11

11(10) - First metasomal tergite striate at least in apical half ... 12
 -- - First metasomal tergite entirely or mostly smooth ... 14

12(11) - Hind femur 5.0 times as long as its maximum width. First flagellar segment 5.0 times as long as its maximum width. Vein 3-SR and 2-M fused distally, without vein r-m between them. Body length 1.5 mm. Bulgaria A. (E.) variennis (Zaykov et Fischer)
 -- - Hind femur 3.8-4.3 times as long as its maximum width. First flagellar segment 3.5-4.5 times as long as its maximum width. Vein 3-SR and 2-M not fused distally, with vein r-m between them ... 13

13(12) - First metasomal tergite long, 4.0-4.5 times as long as its apical width. Length of median antennal segments 3.0-3.3 times their maximum width. Areola of propodeum entirely in irregular sculpture. Body length 2.4-3.0 mm. Japan .. A. (E.) ryukyuensis (Belokobylskij), comb. nov.
 -- - First metasomal tergite short, 1.4-1.6 times as long as its apical width. Length of median antennal segments about 2.0 times their maximum width. Areola of propodeum mainly smooth. Body length 1.6-1.9 mm. Russia (Far East), Japan .. A. (E.) pacifica (Belokobylskij), comb. nov.

14(11) - First flagellar segment 5.0 times as long as its maximum width. Head in dorsal view 1.5 times as long as wide. Body length 1.8 mm. Australia A. (E.) magmareatau (Fischer), comb. nov.
 -- - First flagellar segment 2.5-3.5 times as long as its maximum width. Head in dorsal view 1.8-2.0 times as long as wide ... 15

15(14) - Mandible as long as wide. First flagellar segment 3.5 times as long as its maximum width. Eye in dorsal view 2.5 times as long as long as temple. Body length 1.5 mm. USA A. (E.) paracylpealis (Fischer), comb. nov.
 -- - Mandible 1.5 times as long as wide. First flagellar segment 2.5 times as long as its maximum width. Eye in dorsal view 2.5 times as long as long as temple 1.3-1.5 times as long as temple ... 16

16(15) - Hind femur 5.0 times as long as its maximum width. Fourth flagellar segment 1.5 times as long as its maximum width. Body length 1.0 mm. La Réunion ... A. (E.) nanocorpus (Fischer), comb. nov.
 -- - Hind femur 3.3 times as long as its maximum width. Fourth flagellar segment 1.7-1.8 times as long as its maximum width. Body length 1.3-1.4 mm. Kenya, Madagascar ... A. (E.) noyesi (Peris-Felipo), comb. nov.

17(1) - First tooth of mandible distinctly widened towards apex. First metasomal tergite 1.5 times as long as its apical width. Body length 1.8 mm. Austria, China, Korea .. A. (E.) acutidentata (Fischer)
 -- - First tooth of mandible not or only weakly widened towards apex. First tergite 2.0-4.0 times as long as its apical width ... 18

18(17) - Mesoscutum with dorsal pit ... 19
 -- - Mesoscutum without dorsal pit ... 24

(continued)
Institut National d'Histoire Naturelle, Paris, France) and Yves Braet (Institut Royal des Sciences Naturelles de Belgique, Bruxelles, Belgium) for loan of material. Also, we want to thank Isabelle Zuecker, Mirjam Luzzi and Matthias Borer (Naturhistorisches Museum Basel, Switzerland) for their kindness and help during our work with the photosystem. This work was in part funded by grants given by of the Russian Foundation for Basic Research (project No. 19-04-00027 and the Russian State Research Project No. AAAA-A17-117030310210-3) to second author.

Acknowledgements

We are very thankful to Claire Villemant (Muséum National d’Histoire Naturelle, Paris, France) and Yves Braet (Institut Royal des Sciences Naturelles de Belgique, Bruxelles, Belgium) for loan of material. Also, we want to thank Isabelle Zuecker, Mirjam Luzzi and Matthias Borer (Naturhistorisches Museum Basel, Switzerland) for their kindness and help during our work with the photosystem. This work was in part funded by grants given by of the Russian Foundation for Basic Research (project No. 19-04-00027 and the Russian State Research Project No. AAAA-A17-117030310210-3) to second author.
References

Authors’ addresses: Francisco Javier PERIS-FELIPO (corresponding author: peris.felipo@gmail.com), Bleichestrasse 15, Basel CH-4058, Switzerland; Sergey A. BELOKOBYLSKIJ, Zoological Institute, Russian Academy of Sciences, St Petersburg, 199034, Russia; Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, Warszawa 00-679, Poland.

Received September 3, 2018. Accepted January 22, 2019.