Evidence of a female-produced sex pheromone in the European pear psylla, *Cacopsylla pyri*

Sonia GANASSI1,2,5, Giacinto Salvatore GERMINARA3, Sandra PAt3, Stefano CIVOLANI4, Stefano CASSANELLI1, Maria Agnese SABATINI1,2, Antonio DE CRISTOFARO5

1Centro Interdipartimentale per il Miglioramento e la Valorizzazione delle Risorse Biologiche Agro-Alimentari (BIOGEST-SITEIA), Reggio Emilia, Italy
2Department of Life Sciences, University of Modena and Reggio Emilia, Italy
3Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Italy
4Department of Life Sciences and Biotechnology, University of Ferrara, Italy
5Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy

Abstract

Cacopsylla pyri (L.) (Hemiptera Psyllidae) is one of the most important pests of pear orchards in Europe that reduces the market value of pears. Summerform *C. pyri* males significantly preferred odours from living females or female cuticular extracts in the absence of visual stimuli in a Y-tube olfactometer. Conversely, males as well as females did not show any preference for odours from specimens of the same sex. Electroantennogram recordings showed that female cuticular extracts elicit dose-dependent responses in male antennae suggesting the presence of volatile compounds capable to stimulate the male peripheral olfactory system. Gas-chromatography coupled with mass spectrometry revealed marked quantitative differences between male and female cuticular extracts regarding 13-methylheptacosane, 11,13-dimethylheptacosane, 2-methylheptacosane, and 3-methylheptacosane. These compounds were found in larger amounts in female extracts which suggests their role in male attraction.

Key words: *Cacopsylla pyri*, sex pheromones, EAG, 13-methylheptacosane, 11,13-dimethylheptacosane, 2-methylheptacosane, 3-methylheptacosane.

Introduction

European pear psylla, *Cacopsylla pyri* (L.) (Hemiptera Psyllidae), is one of the most important pests of European pear, *Pyrus communis* L., in European pear growing areas. *C. pyri* damage includes necrosis of leaf and fruit tissues as well as the excretion of honeydew, which is quickly colonised by black sooty mould fungi, in turn reducing the market value of pears. In addition, *C. pyri* is the main vector of *Candidatus Phytoplasma pyri* responsible for pear decline disease that reduces tree vigour and sometimes causes tree death in Europe (Seemüller and Schneider, 2004). Adults of *C. pyri* are characterized by a marked seasonal dimorphism (Nguyen, 1972): a dark winterform appears at the beginning of September (Lyoussoufi et al., 1994; Civolani and Pasqualini, 2003) and overwinters individually or in small groups sheltered in cracks of the tree bark, at branch crossing or at the base of buds of the host plant, in a photoperiod-controlled reproductive diapause (Lyoussoufi et al., 1994). Oviposition in the field by post-diapause winterform begins in late winter as temperature increases (Nguyen, 1975). A small, lighter coloured adult summerform develops during the growing season. In Emilia-Romagna Region (Italy), the largest European pear growing area, *C. pyri* has five generations per year (Pollini, 2002). The control of *C. pyri* is currently based on a restricted number of insecticides, including highly efficient abamectin and spirotetramat (Civolani et al., 2015). Although such compounds are currently used to control this pest in late spring, according to regional integrated pest management (IPM) technical guidelines, *C. pyri* outbreaks are sometime observed in the following summer (Civolani et al., 2010). Observed outbreaks may be associated with the use of broad-spectrum insecticides which reduce natural enemies of *C. pyri*, particularly *Anthocoris nemoralis* (F.) (Hemiptera Anthocoridae), the main natural predator of pear psyllids (Nicoli et al., 1989; Shaltiel and Coll, 2004; Souliotis and Moschos, 2008). Inoculative releases of *A. nemoralis* adults may provide an alternative to chemical control of pear psyllids, but these efforts are often insufficient to keep the infestation at an economically acceptable level (Sigsgaard et al., 2006). Host plant resistance has been viewed for a long time as the best alternative and ecologically safe approach to insecticidal control of pear psyllids, but the identified resistant pear selections are not considered commercially acceptable (Pasqualini et al., 2006; Nin et al., 2012). For this reason, new alternative control methods of *C. pyri* are desirable. The identification of attractant semiochemicals could provide onset for new *C. pyri* control strategies within IPM context.

In certain species cuticular hydrocarbons, molecules derived from fatty-acid compound that are produced on the adult cuticle shortly following eclosion (Blomquist, 2010), are known to be involved in chemical communication and a multitude of studies have shown that these components convey information about species and genus recognition (Howard and Blomquist, 2005; Said et al., 2005), sex (Svertsen et al., 1995; Sullivan, 2002; Steiner et al., 2005; 2006; Sugeno et al., 2006; Geislerhardt et al., 2009; Ferveur and Cobb, 2010; Ginzel, 2010; Ruther et al., 2011; Kühbandner et al., 2012; Smith et al., 2012; Ingleby, 2015), and physiological state (Howard, 1993; Singer, 1998; Howard and Blomquist, 2005; Blomquist and Bagneres, 2010).
Previous studies on the role of chemical signals in mate location within the superfamily Psylloidea have shown male attraction to female odors in two pear psylla species, namely *Cacopsylla hibidens* (Sulc) (Soroker et al., 2004) and *Cacopsylla pyricola* (Foerster) (Horton and Landolt, 2007; Horton et al., 2007; 2008; Guédot et al., 2009a; 2011), in the Asian citrus psyllid, *Diaphorina citri* Kuwayama (Wenninger et al., 2008), and in the potato psyllid, *Bactericera cockerellii* (Sulc) (Guédot et al., 2010). Some chemicals involved in sexual communication are known for the *C. pyricola* winterform and summerform morphotypes (Guédot et al., 2009b; Guédot et al., 2011) and for *C. bidens* (Soroker et al., 2004). Electroantennogram (EAG) recordings and behavioural tests showed that males of *C. bidens* gave the highest EAG responses and were attracted to volatiles from pears infested with females but not to males or uninfested pears (Soroker et al., 2004). A sex-attractant phenolone, 13-methylheptacosane, was identified from solvent extracts of winterform *C. pyricola* females, and was shown to attract winterform males in olfactometer and field tests (Guédot et al., 2009a; 2009b).

Here, the presence of a putative sex pheromone in *C. pyri* was investigated. The behavioural response of summerform males and females to conspecific of both sexes was first studied in Y-tube olfactometer bioassays. Then female cuticular extracts were assessed by electrophysiological and behavioural bioassays in order to characterize their bioactivity. Finally, male and female extracts were chemically analysed to point out possible differences between the chromatographic profiles.

Materials and methods

Insects

Adults summerform of *C. pyri* were collected in infested pear orchards near Ferrara (northern Italy) during May 2012 and mass-reared on two-year old potted pear plants (cv. Bartlett) placed in Plexiglas cages (42 cm length, 60 cm width, 37 cm depth) with two access openings closed by gauze (mesh 1 mm) to allow air exchanges for plant and insects care and maintained at 25 ± 2 °C under a L16:D8 photoperiod.

Adults were sexed and placed one per glass vial (20 ml) three hours before using in electrophysiological and behavioural bioassays or in groups of 12, 25, 50 specimens, per vial, for extracts preparation.

Cuticular extracts

Whole body solvent extracts were prepared as previously described (Guédot et al., 2011) with slight modifications. During May and July, between 12:00 and 16:00, 50 *C. pyri* females were immerged in 300 µl of *n*-pentane (0.166 insect equivalent/µl) in a 2 ml glass vial and agitated by hand for 10 min. For EAG tests, additional extracts were obtained by using 12 or 25 females in 300 µl of *n*-pentane (0.04 female equivalent/µl; 0.083 female equivalent/µl, respectively) or 50 females in 150 µl (0.333 female equivalent/µl). Each extract was then transferred to a clean glass vial and stored at −20 °C until needed for EAG, olfactometer and chemical analyses. Before using the vials were washed with soapy hot water, followed with a distilled water rinse, dry the water off with acetone, and dry in an oven at 300 °C for 4 hours.

Olfactometer bioassay

A glass Y-tube olfactometer (each arm 23 cm long at 75° angle, stem 30 cm long, 3.0 cm i.d.) similar to that described in Germinara et al. (2011) was used to assess the attraction responses of *C. pyri* adults (of both sexes) to male and female odours and to female cuticular extracts. Each arm of the Y-tube was connected to a glass cylinder (9 cm long and 3.0 cm i.d.) as an odour source container. The device was put into an observation chamber (90 × 75 × 40 cm) and illuminated from above by two 36-W cool white fluorescent lamps providing uniform lighting (2500 lux) as measured by a photodiometer (HD 9221 Delta OHM) at the cross section centre of the tube. A purified (activated charcoal) and humidified (bubble bottle) airflow, maintained at 12 cm/sec in each arm by a flowmeter was pumped through each arm. Olfactometer bioassays were carried out between 12:00 and 18:00. A first set of experiments evaluated the behavioural response of each sex to the odours of three live males or females vs clean air in order to recognize a possible sex specific attraction. In a second set of experiments, the response of males to 1 female equivalent extract (6 µl of 0.166 female equivalent unit extract) vs *n*-pentane (6 µl) was assessed in order to confirm the presence of attractive compounds. In this case, treatment and control stimuli were soaked onto two filter paper disks (0.5 cm²) and suspended in the centre of the cross section of the odour chambers. One adult male or female was released at the open end of the stem and allowed to acclimate to the clean air flow for 15 min before exposure to the test stimuli. Each bioassay lasted 10 min. A choice was recorded when the insect exceeded the first 3 cm of an arm, marked by a horizontal line, for at least 10 sec. Insects that failed to make a choice within the first 10 min were discarded (Guedot et al., 2009b; 2011). Stimuli (control and treatment) were renewed for each insect tested. For each test stimulus at least 50 adults were used.

Before each bioassay, clean air was passed through the whole system for 15 min. After 5 psylla were assayed the olfactometer was rotated 180° in order to avoid positional bias. After 10 psylla were tested, glassware was rinsed with hexane and dried in an oven at 150 °C for at least 3 h. For each test stimulus a χ² test was used to determine significant differences between the number of psylla choosing the treatment and control. Statistical analyses were performed using SPSS 20.0 per Windows software (SPSS Inc., Chicago, IL, USA).

Electroantennography (EAG)

The EAG technique was similar to that used in previous studies (De Cristofaro et al., 2004; Germinara et al., 2012; Anfora et al., 2014). A male was dissected between the abdomen and the thorax and a glass micropette (0.2–0.3 mm i.d.) filled with 10 mM NaCl solution,
acting as the neutral electrode, was inserted into the thorax. The last antennal segment was put in contact with the end of a similar pipette which provided the recording electrode. AgCl coated silver wires were used to maintain the electrical continuity between the antennal preparation and an AC/DC UN-6 amplifier in DC mode connected to a PC equipped with the EAG 2.0 program (Syntech Laboratories, Hilversum, The Netherlands). A stream of charcoal-filtered humidified air (500 ml/min) was directed constantly onto the antenna through a stainless steel delivery tube (1 cm i.d.) with the outlet positioned at approximately 1 cm from the antenna. Twenty five microliters of each female extract were absorbed onto a filter paper (Whatman No. 1) strip (1 cm × 2 cm) inserted in a Pasteur pipette (15 cm long) and used as an odour cartridge. Stimuli were allowed to evaporate for ca. 5 min before using. Over 1 sec, 2.5 cm² of vapour from an odour cartridge were blown by a disposable syringe into the air stream flowing over the antennal preparation. Stimuli were applied in ascending doses (1.04, 2.08, 4.16, 8.32 C. pyri female cuticular extract equivalent units).

Control (25 µl of n-pentane) and standard stimuli (25 µl of 1 M (Z)-3-hexen-1-ol n-pentane solution) were applied at the beginning and at the end of the experiment. Intervals between stimuli were 30 sec. EAG responses were recorded from 10 different male antennae.

The amplitude (mV) of the EAG response to each test stimulus was adjusted to compensate for solvent and/or mechanosensory artefacts by subtracting the mean EAG response of the two nearest n-pentane controls (Raguso and Light, 1998).

In dose-response curve, the activation threshold was considered to be the lowest dose at which the lower limit of the standard error of the mean response was greater than the upper limit of the standard error for the lowest dilution tested (Sant’ana and Dickens, 1998). Saturation level was taken as the lowest dose at which the mean response was equal to or less than the previous dose (Germinara et al., 2009). Mean male EAG responses (mV) to four concentrations of the female cuticular extract were submitted to one-way analysis of variance (ANOVA) followed by Student-Newman-Keuls (SNK) test (P < 0.05).

Gas-Chromatography coupled with Mass Spectrometry (GC-MS)

A 1 µL of extract (ca. 1 female equivalent) was analysed by a 6890N series gas chromatograph (Agilent Technologies) coupled with an Agilent 5973 mass selective detector (MSD) and equipped with a DB-WAX capillary column (60 m × 0.25 mm i.d., 0.25 µm film thickness, J&W Scientific Inc., Folsom, USA). The carrier gas was helium at a flow rate of 1.0 mL/min. The injection was made in the splitless mode, the injector temperature was 250 °C. The column oven temperature was initially held at 40 °C for 3 min, then it was programmed to 220 °C at 3 °C/min, with a final holding time of 20 min. Spectra were recorded in the electron impact mode (ionization energy, 70eV) in a range of 30-500 amu at 3.2 scans/s. A solvent delay time of 10 min was used to avoid overloading the mass spectrometer with solvent.

Solvent controls were analyzed to check for interferences. Hydrocarbons were tentatively identified by the comparison of their retention times vs C10, C20-C28 even straight-chain alkane standards and with the help of mass spectra interpretation, as no authentic standards were commercially available. Kovats method used linear n-alkanes standards and was based on linearity between the carbon atoms number and the logarithm of specific retention time (Kovats, 1958). When temperature-programmed conditions instead of isothermal conditions are involved, as in this case, a generalization of the retention index system can be used, as proposed by Van den Dool and Kratz (1963). Briefly, the method includes linear temperature-programmed gas chromatography indices as follows: Ix = 100[(tn−tn)/((tn+1−tn)+n)], where Ix is the temperature-programmed retention index, tn, tn+1 and tn the retention time (in minute) of the two n-alkanes containing n and n + 1 carbons and of the compound of interest, respectively. As for mass spectra interpretation, methyl branched hydrocarbons gave enhanced diagnostic ions at branch points that allowed their tentative identification (Guédot et al., 2009b). Besides, comparison of MS fragmentation patterns with those included in the National Institute for Standards and Technology database (NIST 02, p > 80) were utilized to support tentative identification. Semi-quantitative analysis was carried out using the integrated peak area data from the GC-MS trace.

Results

Olfactometer bioassay

When males and females (n = 50 for each sex) were presented with odours from specimens of the same sex vs clean air the 68% and 56%, respectively, were responding. Among responding insects, the percentage of males (47.1%) and females (46.4%) choosing the arm containing respectively odours from males or females did not differ significantly from those of insects orienting to the empty arm (52.9% and 53.6% respectively) (male: $\chi^2 = 0.12$; df = 1; P > 0.05; female: $\chi^2 = 0.14$; df = 1; P > 0.05) (figure 1).

When exposed to females vs clean air, the 70% of males tested (n = 100) made a choice and the percentage of those (65.7%) choosing the arm with females was significantly higher than that of males entering the empty arm (34.3%) (male: $\chi^2 = 6.91$; df = 1; P < 0.01) (figure 1). When exposed to males vs clean air, the 60.0% of females tested (n = 60) made a choice but they did not show a significant preference for males (55.5%) compared with control air (44.5%) (female: $\chi^2 = 0.44$; df = 1; P > 0.05).

When presented with odours of the female cuticular extract vs control n-pentane, the 51.8% of males tested (n=108) made a choice and the percentage of males orienting to the extract (71.43%) was significantly higher than that of males entering the control arm (28.47%) (male: $\chi^2 = 10.286$; df = 1; P < 0.01) (figure 1).
Figure 1. Preference of responding *C. pyri* (expressed as a percentage) to odours: preference of responding males and females to odours from specimens of the same sex vs clean air, respectively (black bars). Preference of responding males exposed to females vs clean air; and females exposed to males vs clean air; (gray bars). Preference of responding males to female cuticular extract (4.16 f.e.); (diagonal lines bar).

EAG test

In the dose range tested, the mean EAG response of males varied from 0.128 mV to 0.585 mV (figure 2). The EAG response increased with the doses from 1 to 4 female equivalents and decreased from 4 to 8 female equivalents. The activation and the saturation thresholds were at 2 and 4 female equivalents, respectively (figure 2).

ANOVA revealed significant differences among the mean EAG responses of males to 1.04, 2.08, 4.16, 8.32 female equivalent doses (F = 7.848; df = 3, 40; P < 0.01). The mean EAG response to 4.16 female equivalent was significantly higher (P < 0.001) than those to the other doses (figure 2).

GC-MS

Chemical analysis of cuticular extracts from both male and females revealed the presence of a great number of hydrocarbons (figure 3). The cuticular hydrocarbons extracts included C10-C28 straight-chain alkanes, as compared with alkanes standard solution. Both chromatograms were quite similar with the exception of the region in the range of 72–82 min, illustrated in the inset of figure 3.

Peaks showing area at least three times as abundant in females compared to males were selected and listed in table 1, where information on retention times, tentative attribution, and MS ions, is reported. It is worth noting that compounds 1, 2, 3 and 4 were 11, 14, 3 and 14 times, respectively, more abundant in females than in males, and all eluted between hexacosane (retention time 70.32 min) and octacosane (retention time 81.36 min) standards. In accordance with Guédot *et al.* (2009b), LRI and interpretation of mass spectra were used to tentatively identify the target compounds. The molecular ion suggested the total number of carbons in the molecule, methyl-branched hydrocarbons gave enhanced diagnostic ions at branch points that allowed the positions of the methyl branches to be revealed, and the presence of methyl branches caused diagnostic shifts in retention times vs straight-chain standards. Compound 1 showing diagnostic ions at m/z 196 and 224 (Guédot *et al.*, 2009b) and showing a high similarity with that included in the MS library NIST 02 (p = 90) was attributed to 13-methylheptacosane. Peak 2 was characterized by diagnostic ions at m/z 168/239 and at 196/267 suggesting the presence of 11,13-dimethylheptacosane. Finally, compounds 3 and 4, with m/z 351 and 365 diagnostic ions, have been tentatively attributed to 2-methylheptacosane and 3-methylheptacosane, respectively (Guédot *et al.*, 2009b). The mass spectra of 11,13-dimethylheptacosane, 2-methylheptacosane and 3-methylheptacosane were not present in the NIST 02.

Figure 2. Mean EAG (mV) dose-responses curve of *C. pyri* males to female extracts in four ascending doses (1.04, 2.08, 4.16, 8.32 female equivalents). Vertical bars represent standard errors. Different letters show significant differences, Student-Newman-Keuls test (P < 0.05).
Figure 3. GC-MS analysis (overlapped) of cuticular extracts from both male (dotted line) and females (full line) C. pyri. The region of the GC-MS trace, in the range of 72-82 min, is magnified on the top right corner of the figure.

Table 1. GC-MS analyses of selected peaks found in n-pentane extracts of C. pyri female and male. Retention times, attribution, MS ions and Area/Area\textsubscript{m} ratio are reported.

<table>
<thead>
<tr>
<th>peak</th>
<th>t\textsubscript{R}/LRI</th>
<th>Compound</th>
<th>Diagnostic ions</th>
<th>Area\textsubscript{f}/Area\textsubscript{m}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76.2/2710</td>
<td>13-methylheptacosane</td>
<td>196; 224 (394, M)+</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>76.9/2723</td>
<td>11,13-dimethylheptacosane</td>
<td>168/239; 196/267 (408, M)+</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>78.3/2747</td>
<td>2-methylheptacosane</td>
<td>351, 379 (394, M)+</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>79.3/2765</td>
<td>3-methylheptacosane</td>
<td>365, 379 (394, M)+</td>
<td>14</td>
</tr>
</tbody>
</table>

\(t\textsubscript{R}/LRI\), retention time/ Linear Retention Index.
\(Area\textsubscript{f}/Area\textsubscript{m}\), ratio of peak area found in female extract GC-MS trace to peak area found in male extract GC-MS trace.

Discussion

In behavioural bioassays, summerform C. pyri males were attracted by living summerform females and their cuticular extracts whereas females were not attracted by males or females. These observations provided evidence for the presence of a female-produced sex pheromone in C. pyri.

Similar behaviour responses have been also reported for other psyllid species including the two pear psyllids, C. bidens (Soroker et al., 2004) and C. pyricola (Horton and Landolt, 2007; Horton et al., 2007; 2008; Guédot et al., 2009a), the potato psyllid, B. cockerelli (Guédot et al., 2010) and the Asian citrus psyllid, D. citri.

The attraction of C. pyricola summerform males to females was further confirmed while summerform females did not respond to odours produced by live summerform males, their solvent extracts and odours from live females regardless of their mating status (Guédot et al., 2011). In field studies, C. pyricola females showed no preferences among traps baited with live females, live males, and unbaited traps (Brown et al., 2009). In D. citri, males were attracted to female cuticular extracts (Mann et al., 2013) but females were not attracted to male extracts (Wenninger et al., 2008). Moreover, GC-MS analyses revealed that dodecanoic and tetradecanoic acids were present in female D. citri cuticular extracts in higher amounts compared with males (Mann et al., 2013).

In this study, female cuticular extracts elicited dose-dependent EAG responses in C. pyri males and attracted them in a highly significant manner in behavioural bioassays, thus suggesting the presence of volatile compounds responsible for male attraction.
Subsequent GC-MS analyses pointed out marked differences between C. pyri female and male extracts regarding likely the presence of 13-methylheptacosane, 11,13-dimethylheptacosane, 2-methylheptacosane, and 3-methylheptacosane which were found in larger amounts in female extracts. Tentative assignments of structure were carried out as no commercially available standard was found. Structure confirmation should be performed in further studies with authentic synthesized standards. Methyl-branched hydrocarbons have been identified as cuticular components in many species of insects (Blomquist et al., 1987; Lockey, 1988; Nelson, 1993; Nelson and Blomquist, 1995; Blomquist, 2010; Yocum et al., 2011). 2-methylheptacosane, 3-methylheptacosane and 13-methylheptacosane were also detected in the cuticular extracts of both sexes of C. pyricola but only the latter is produced by females in a significantly larger amount (Guédot et al. 2009a; 2009b). This compound was proposed as the sex-attractant pheromone of C. pyricola females since it was as attractive to males as the whole female extracts. 13-methylheptacosane was detected also in Western flower thrips Frankliniella occidentalis (Pergande), where it is more than two times lower in adults in comparison to larvae (Golębiowska et al., 2007). Moreover, differences regarding 13-methylheptacosane between fertile queens and workers of the ant Camponotus floridanus (Buckley) were found to be involved in regulating worker reproduction (Endler et al., 2004).

In C. pyri, the additional compounds tentatively identified as 11,13-dimethylheptacosane, 2-methylheptacosane and 3-methylheptacosane, which were detected in significantly higher quantities in female extracts, probably play a role in the reproductive isolation of this species. Tentative structure assignments need further confirmation with authentic synthesized standards. Detailed behavioural and electrophysiological investigations carried out utilizing the above mentioned compounds, tested individually and in blends, are needed to clarify their role in C. pyri mating behaviour. 2-methylheptacosane, and 3-methylheptacosane are sex pheromone components common to many insect species (El-Sayed, 2014). Kühbandner et al. (2012) showed that 3-methylheptacosane is a key component of the females contact sex pheromone in the parasitic wasp Lariophagus distinguendus (Forster); however, it triggers courtship behaviour only if an olfactory background of other cuticular lipids is present. 11,13-dimethylheptacosane was reported as a sex pheromone component of Cataglyphis species (Hymenoptera Formicidae) (Dahbi et al., 1996).

Different studies were focused on sound production and the interactions between acoustic and chemical signals in the courtship behaviour of psyllids (Lubanga et al., 2014). Mechanoreception generally appeared prominent and may play a significant role in much of pear psylla behaviour, including mating, and a high sensitivity of C. bidens male and female antennae to mechanical stimuli was reported (Soroker et al., 2004).

Studies carried out by Wenninger et al. (2009) showed that D. citri produces substrate-borne vibrational signals for mate finding. In this species, indeed, not only host location but also mate finding are probably mediated by several modalities, including an integration of olfactory, visual, and vibrational cues (Mann et al., 2013). Recently, Eben et al. (2014) found evidence of acoustic signals emitted by male and female C. pyri during mate search and pre-copulatory behaviour. The low volatility of candidates C. pyri sex pheromone components identified in this study suggests a short-range attractant function (Bradbury and Vehrencamp, 1998; Singer, 1998; Ferveur, 2005; Griffith and Eijima, 2009; Martin and Drijfhout, 2009) and a possible need of a combination of different sensory modalities (Griffith and Eijima, 2009; Lubanga et al., 2014). Detailed studies of the chemical ecology of the species in the Psyllidae are needed further to understand their mating behaviour (Lubanga et al., 2014). Moreover, the knowledge of a possible interaction of chemical and acoustical signals in mating behaviour of C. pyri (Eben et al., 2014) could be essential for the design of behaviour-modifying biological control methods like mating disruption and push and pull strategies.

Acknowledgements

The authors thank the anonymous referees for corrections and useful suggestions for the improvement of the manuscript. First author was funded by Centro interdipartimentale per il Miglioramento e la Valorizzazione delle Risorse Biologiche Agro-Alimentari (BIOGEST-SITEIA), Università di Modena e Reggio Emilia, Italy.

References

ANFORA G., VITAGLIANO S., LARSSON M. C., WITZGALL P., TASIN M., GERMINARA G. S., DE CRISTOFARO A., 2014.- Disruption of Phthorimaea operculella (Lepidoptera: Gelechiidae) oviposition by the application of host plant volatiles.- Pest Management Science, 70: 628-635.

SEEMÜLLER E., SCHNEIDER B., 2004.- Taxonomic description of ‘Candidatus Phytoplasma mali’ sp. nov., ‘Candidatus Phytoplasmata pyri’ sp. nov., and ‘Candidatus Phytoplasma prunorum’ sp. nov., the casual agents of apple proliferation, pear decline and European stone fruit yellows, respectively.- International Journal of Systematic and Evolutionary Microbiology, 54: 1231-1240.

STEINER S., STEIDLE J. L. M., RUTHER J., 2005.- Female sex pheromone in immature insect males a case of pre-emergence chemical mimicry?- Behavioral Ecology and Sociobiology, 58: 111-120.

Authors’ addresses: Sonia GANASSI (corresponding author, sonia.ganassi@unimo.it), Antonio De CRISTOFARO, Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; Giacinto Salvatore CIVOLANI, Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Foggia, Italy; Stefano CIVOLANI, Department of Life Sciences of Agriculture, Food and Environment, University of Ferrara, Italy; Maria Agnese SABATINI, Stefano CASSANELLI, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.

Received May 25, 2017. Accepted January 22, 2018.
Evidence of a female-produced sex pheromone in the European pear psylla, *Cacopsylla pyri*

Sonia GANASSI, Giacinto Salvatore GERMINARA, Sandra PATI, Stefano CIVOLANI, Stefano CASSANELLI, Maria Agnese SABATINI, Antonio DE CRISTOFARO

Bulletin of Insectology 71 (1): 57-64, 2018

Change “11,13-dimethylheptacosane” to “11,15-dimethylheptacosane” along all the text.

Page 61, add figure 4, the experimental mass spectrum relevant to the peak 2 and the fragmentation scheme for the compound 11,15-dimethylheptacosane, similar to the one reported by Kenig *et al.* (1995).

![Figure 4](image)

Figure 4. Mass spectrum, subtracted for the background, relevant to the peak 2. In the inset, fragmentation scheme of the compound 11,15-dimethylheptacosane.

Page 61, table 1, add this information in the footnotes “Molecular ions in the brackets were not visible in the spectrum, but could be inferred by the diagnostic ions”.

Page 62, delete “11,13-dimethylheptacosane was reported as a sex pheromone component of *Cataglyphis* species (Hymenoptera: Formicidae) (Dahbi *et al.*, 1996).”

We are grateful to our colleagues Jocelyn Millar and David Horton to alert us about a possible mistake in our identification of 11,13-dimethylheptacosane.