Remarks on the biology of *Dinera ferina* (Diptera Tachinidae) as parasitoid of the two Italian *Platycerus* species (Coleoptera Lucanidae)

Davide SCACCINI
Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy

Abstract

Improving the data of the Italian host list of Tachinidae, *Dinera ferina* (Fallen) is confirmed to be a parasitoid of larvae of the two Italian *Platycerus* species, *Platycerus caprea* (De Geer) and *Platycerus caraboides* (L.) (Coleoptera Lucanidae). In 2015, 2016 and 2017, larvae, puparia and adults of the tachinid fly were studied in field, semi-field and laboratory conditions. The mature larva of the parasitoid was almost as big as its host, and showed the posterior spiracles from the host cuticle. The emergence from the host took only a few seconds. *Platycerus* pupae were not involved in *D. ferina* parasitism. Pupation occurred outside the host remains, from a third instar *Platycerus* larva. In semi-field and laboratory conditions, pupal duration was recorded to be 23.8 ± 7.0 (mean ± S.D.) days long. The presence of soft wood and frass near the puparium seemed to be necessary for the freshly emerged adult of *D. ferina*, to leave the wood habitat. Their adults were observed mainly in May, with few individuals found in April, June or September. In the field, the parasitism rate on *P. caraboides* amounted to 23.7%, with differences among collecting provinces and sites.

Key words: *Platycerus caprea*, *Platycerus caraboides*, saproxylic, larva, host.

Introduction

Tachinid flies (Diptera Tachinidae) live in nearly all terrestrial environments, as deserts, forests, grasslands, mountains and tundra, where adults feed on nectar and other plant exudates and products (Stireman et al., 2006). About 8500 species of tachinid flies are described worldwide (O’Hara, 2013), and more than 1600 in the Palaearctic Region (Tschorsnig and Richter, 1998). In Italy, 640 species are recorded (Cerretti, 2010a). Despite the occurrence of polyphagous and monophagous species, they usually are oligophagous; the larvae are endoparasitoids and have a wide host range within the phylum Arthropoda (Mellini, 1991; Stireman et al., 2006; Cerretti et al., 2010; Dindo, 2011; Tschorsnig, 2017).

In the tribe Dexini, the female lays its eggs or larvae into external holes of the host galleries (Mellini, 1991; Stireman et al., 2006; Cerretti et al., 2010) and the larvae actively search for their hosts through chemosensory cues (indirect ‘searchers’ of Stireman et al., 2006). It allows the parasitism of hosts living in ‘hidden places’ (i.e., underground or in the wood). Particularly, in the tribe Dexini several species are parasitoids of saproxylic beetle larvae (Coleoptera), including Scarabaeidae, Lucanidae, Buprestidae, Cerambycidae, Curculionidae and Tenebrionidae, as well as larvae of ground beetles (Carabidae) (Zhang and Shima, 2006; Cerretti et al., 2010; Tschorsnig, 2017). In the genus *Dinera* Robineau-Desvoidy, 21 species are described for the Palaearctic and Oriental Regions (Zhang and Shima, 2006; Zhang and Fu, 2012), four of them occurring in Europe: *Dinera carinifrons* (Fallen), *Dinera ferina* (Fallen), *Dinera fuscuta occidentalis* Ziegler, and *Dinera grisescens* (Fallen) (Tschorsnig et al., 2004; Pape et al., 2015; Ziegler et al., 2016).

The aim of the present study is to report some cases of parasitism by the tachinid fly *D. ferina* of the larvae of the two Italian *Platycerus* species, *Platycerus caprea* (De Geer) and *Platycerus caraboides* (L.), and to report some ecological notes on the parasitoid.

Materials and methods

The study was conducted in 2015, 2016 and 2017, in field, semi-field and laboratory conditions. In the field, during collection of *Platycerus* individuals in three provinces of northern Italy where they are present, Bergamo, Pavia, and Piacenza (Bartolozzi and Muggini, 2007; Scaccini, 2018, and personal observation), larvae and puparia of their parasitoid were collected, and an adult observed. *P. caprea* and *P. caraboides* were collected directly from the deadwood; findings of suitable logs were aided by the presence of their oviposition scars (Scaccini, 2016), also because *Platycerus* are not very common beetles. *P. caprea* and *P. caraboides* were reared in semi-field condition in boxes, kept separated according to the origin of the specimens. Furthermore, some larvae and pupae of the two Italian *Platycerus* species were reared in a laboratory mimicking natural temperature (23-25 °C in summer, 7-9 °C in winter). The pupal duration and the adults’ appearance period were recorded. Beetles have been identified by using identification keys (cf. Hürka, 1975; Franciscolo, 1997; Scaccini, 2015). Tachinid identification was performed on adults by using the identification keys of Tschorsnig and Herting (1994; translated by Rayner and Raper, 2001) and Cerretti (2010a; 2010b). Parasitoids are stored in the author’s collection in Zelo Buon Persico (Lodi), and two adults in the Florence Museum (Museo di Storia Naturale dell’Università degli Studi di Firenze, division of Zoology ‘La Specola’).
Results and discussion

P. caprea and _P. caraboides_ are herewith confirmed hosts of _D. ferina_, improving the data of the Italian host list of Tachinidae (Cerretti and Tschorsnig, 2010). Only one case of parasitism was recorded for a larva of _P. caprea_ (surroundings of Brallo di Pregola, Pavia province, 1160 m a.s.l., August 17, 2015), while the others concerned _P. caraboides_ larvae. Parasitoids never emerged from _Platycerus_ pupae.

D. ferina is distributed in Europe, and in Russia in East Siberia and the Transcaucasus (Zhang and Shima, 2006). The current host list of _D. ferina_ includes larvae of the following saproxylic beetle species: _Sinodendron cylindricum_ (L.), _Dorcus parallelipipedus_ (L.) (Lucanidae), _Helops coerules_ (L.) (Tenebrionidae), and _Drymochara cylindracea_ (Fairmaire) (Cerambycidae) (e.g. Didier, 1937; van Emden, 1950; Herting, 1960; Campadelli, 1989; Hidalgo-Fontiveros, 2014; Tschorsnig, 2017). Grandi (1951) also quoted that the larvae of _P. caraboides_ could be parasitized by the tachinid fly _D. ferina_, although the observation is not effective because the two Italian _Platycerus_ species were not distinct up to 1956 (cf. Franciscoli, 1997).

D. ferina inhabits forest edges, deforested areas, and meadows, and adults are often observed on flowers (Campadelli, 1989; Tschorsnig and Herting, 1994). In Europe, _Dinera_ species are observed from lowlands and medium elevations, up to the high mountains (e.g. Tschorsnig et al., 2003; Lutovinovas et al., 2013; Pohjoismäki, 2013; Ziegler et al., 2016).

Adults are recorded from early June to the end of September, with a peak from the end of June to mid-August (Campadelli, 1989; Tschorsnig and Herting, 1994; Lutovinovas et al., 2013). It is considered a seasonal species in a field study in Germany (Pohjoismäki, 2013), and probably has only one generation per year (Tschorsnig and Herting, 1994). In the present study, adults of _D. ferina_ were observed mainly in May, while few individuals in April, June or September (figure 1).

The ovolarviposition of _D. ferina_ can occur from spring to late summer, possibly in external holes of the host galleries on deadwood as hypothesized by Campadelli (1989). The female could be attracted by deadwood and locate the host by the presence of its frass, which can act as kairomones as reported for different tachinid species (e.g. Vinson, 1976; Roth et al., 1978; Clement et al., 1986; David et al., 1988; Vet and Dicke, 1992; Tanaka et al., 2001; Stireman et al., 2006; Wilson and Woods, 2015). The first instar larvae actively search for the hosts in the deadwood, and develop inside them up to the first winter, when they diapause. The hibernation in tachinids takes place at the pupal stage, or in first- or early second instar larva (Tschorsnig and Richter, 1998), while there are some cases of hibernation taken by the third instar (Cerretti and Mei, 2001).

D. ferina adults emerged from third instar larvae of _Platycerus_, and in at least two cases the second larval instar was already parasitized before the collection. A mature larva, as big as the host, shows the prominent posterior spiracles from the thorax of the host, near a leg (figure 2A), in the same position indicated by Campadelli (1989) in _S. cylindricum_ larvae. Pupation of _D. ferina_ occurred outside the host remains (figure 2B), and the emergence from the host lasted a few seconds. Furthermore, in two cases, the emerged larvae were observed to wander in the pabulum for one and four days, respectively. It could be possible that the larva actively searches for a place to pupate, or prepares a way out for the adult as done by the Dexitinae _Billaea irrorata_ (Meigen) (Pulkkinen and Yang, 1984). Despite it is not clear how the adult of _D. ferina_ leaves the wood habitat (Campadelli, 1989), in several cases puparia were found in soft wood places, with a lot of frass, often near the wood surface (figure 2B).

Morphologically, the puparium of _D. ferina_ belongs to the _D. carinfrons_ and _Billaea_ spp. group (Ziegler, 1998; Ziegler et al., 2016). Pupal stage lasted 23.8 ± 7.0 (mean ± S.D.) days, ranging from 17 to 36 days (n = 6). The adult (figure 2C-E) left the deadwood habitat right after the emergence.

Parasitism rates for _P. caraboides_ are reported in table 1, arranged by province. Notably, Campadelli (1989) reported a parasitism rate of 15.6% (n = 96 _S. cylindricum_ larvae), considering it low, probably due to the difficulty for the parasitoid to reach the host in deadwood. Indeed, the abundance of other parasitoids (Hymenoptera) is recorded to be higher in snags than in fallen logs, possibly due to the presence of the ground or the adjacent vegetation, which have a negative influence on the accessibility of fallen logs (Ulyshen et al., 2011). The Italian _Platycerus_ species prefer fallen logs...
Figure 2. *D. ferina.* A) Parasitism of *P. caraboides* larva: protruded posterior spiracles are visible on the host prosternum (arrow); B) Puparium in field, with remains of the host (arrow), and a lot of frass in a soft wood; C) Adult habitus (female), about two hours after the eclosion; D) Right wing; E) Head (male).

(In colour at www.bulletinofinsectology.org)

Table 1. *P. caraboides*: parasitism rates and collecting data.

<table>
<thead>
<tr>
<th>Municipality (province)</th>
<th>Elevation (m a.s.l.)</th>
<th>n of D. ferina (adults)</th>
<th>n of P. caraboides larvae (second and third instars)</th>
<th>Parasitism rate by province (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bettola (Piacenza)</td>
<td>790</td>
<td>1</td>
<td>31</td>
<td>Piacenza 20.8</td>
</tr>
<tr>
<td>Bobbio (Piacenza)</td>
<td>455</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Farini (Piacenza)</td>
<td>725</td>
<td>4</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Farini (Piacenza), close to Pradovera</td>
<td>855</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Gropparello (Piacenza)</td>
<td>725</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Ponte dell'Olio (Piacenza)</td>
<td>585</td>
<td>2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Rivergaro (Piacenza)</td>
<td>460</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Lenna (Bergamo)</td>
<td>630</td>
<td>1</td>
<td>8</td>
<td>Bergamo 28.6</td>
</tr>
<tr>
<td>Piazzatorre (Bergamo)</td>
<td>1000</td>
<td>5</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Piazzolo (Bergamo), place 1</td>
<td>750</td>
<td>2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Piazzolo (Bergamo), place 2</td>
<td>760</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Piazzolo (Bergamo), place 3</td>
<td>840</td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>from 455 to 1000</td>
<td>27</td>
<td>114</td>
<td>23.7</td>
</tr>
</tbody>
</table>
rather than standing ones (Scaccini, 2016), however the total parasitism rate (calculated considering living sec-
ond and third instar larvae, n = 114) was higher (23.7%) than that observed by Campadelli (1989) on S. cyl-
dricum. This can be explained by a higher susceptibility to parasitism by Platycerus species. Some differences recorded between Bergamo and Piacenza provinces need to be confirmed by further investigations (table 1).

Conclusions

The host/parasitoid relationship between D. ferina and the two Italian Platycerus species is here confirmed. Emergence of adults of D. ferina occurred outside the remains of third instar larvae of the hosts, and in at least two cases the host was parasitized before being a third instar larva. Adults of the parasitoid were observed mainly in May, but also in April, June and September, and parasitism rates varied among sites. Saproxylic or-
ganisms often have strict relationship with other species, and improving our knowledge on these relations can act as key issue to better understand the dynamics of the saproxylic community.

Acknowledgements

The author is grateful to Pierfilippo Cerretti for the care-
ful revision and the confirmation of tachinid identification, and to Andrea Battisti and the three anonymous
reviewers for revision. The author would like to thank Mauro Gori for kind advices provided before writing the manuscript.

References

BARTOLOZZI L., MAGGINI L., 2007.- Insecta Coleoptera Lu-
canidae.- Memorie del Museo Civico di Storia Naturale di
CAMPAGNELLI G., 1989.- Note biologiche su Dinera ferina Fall. (Dipt. Tachinidae) parasitoido di Sinodendron clyndricum L. (Col. Lucanidae).- Bollettino dell’Istituto di Entomologia "Guido Grandi" della Università degli Studi di Bologna, 43: 75-78.
CERRETTI P., 2010a.- I Tachinidi della fauna italiana (Diptera Tachinidae), con chiave interattiva dei generi ovest-
paleartici Vol. I.- Centro Nazionale Biodiversità Forestale, Cierre Edizioni, Verona, Italy.
CERRETTI P., 2010b.- I Tachinidi della fauna italiana (Diptera Tachinidae), con chiave interattiva dei generi ovest-
paleartici Vol. II. Il Atlante iconografico.- Centro Nazionale Biodiversità Forestale, Cierre Edizioni, Verona, Italy.
CERRETTI P., MEI M., 2001.- Eugynnapeza braueri (Diptera, Tachinidae) as parasitoid of Blaps gibba (Coleoptera, Tene-
CERRETTI P., TCHORSNIG H.-P., 2010.- Annotated host cata-
logue for the Tachinidae (Diptera) of Italy.- Stuttgartter Bei-

CLEMENT S. L., RUBINK W. L., MCCARTNEY D. A., 1986.- Lar-
viposition response of Bonnetia compta (Dipt.: Tachinidae) to a kairomone of Agrotis ipsilon.- Entomophaga, 31: 277-
284.
DINDO M. L., 2011.- Tachinid parasitoids: are they to be con-
considered as koinobionts?- BioControl, 56: 249-255.
GRANDI G., 1951.- Introduzione allo studio dell’Entomologia Vol. II Endopterigoti.- Edizioni Edagricole Bologna, Bolo-
yna, Italy.
HERTING B., 1960.- Biologie der westpalaarktischen Raupen-
fliegen (Dipt., Tachinidae).- Monographien zur angevand-
HIDALGO-FONTIVEROS A., 2014.- Dinera ferina (Fallén, 1817) (Diptera: Tachinidae): primer registro como parasitoide de Drymocharas cylindraceus Fairmaire (1849) (Coleoptera: Cerambycidae).- Boletín de la Sociedad Entomológica Ara-
gonesa, 55: 298.
HÜRKA K., 1975.- Die Larven der europäischen Platycerus-
LUTOVINOVAS E., MALENOVSKY L., TÓTHOVÁ A., ZIEGLER J., VAŇHARA J., 2013.- Taxonomic approach to the tachinid flies Dinera carinifrons (Fallén) (Diptera: Tachinidae) and Dinera fuscata Zhang and Shimia using molecular and mor-
O’HARA J. E., 2013.- History of tachinid classification (Dipt-
tera, Tachinidae).- ZooKeys, 316: 1-34.
PAPE T., BEUK P., PONT A. C., SHATAKLI A. I., OZEROV A. L., WÓZNICA A. J., MERZ B., BYSTROWSKI C., RAPER C., BERGSTRÖM C., KEHLMAIER C., CLEMENTS D. K., GREAT-
POKOJSIMA J., 2013.- Observations of Tachinidae (Diptera) in the surroundings of Friedberg (Hessen, Germany) with notes on some interesting species.- The Tachinid Times, 26: 39-45.

Author’s address: Davide SCACCINI, University of Padova, Department of Agronomy, Food, Natural Resources, Animals and Environment, viale dell’Università 16, 35020 Legnaro, Padova, Italy. (davide.scaccini@phd.unipd.it)

Received August 10, 2017. Accepted December 1, 2017.