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Abstract 
 
The scientific community working in the field of insect pathology is experiencing an increasing academic and industrial interest in 
the discovery and development of new bioinsecticides as environmentally friendly pest control tools to be integrated, in combina-
tion or rotation, with chemicals in pest management programmes. In this scientific context, market data report a 15% annual growth 
of the biopesticide segment. This trend is in line with the requirements of new regulations on Integrated Pest Management. After 
few decades of research on microbial pest management dominated by Bacillus thuringiensis (Bt), novel bacterial species are being 
discovered and developed into new products. With the aim to give a timely picture of the cutting-edge advancements in this re-
newed research field, different representative cases are reported, especially including Brevibacillus laterosporus, Chromobacterium 
subtsugae and Yersinia entomophaga. 
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Overview 
 
Pest management approach, methods and discipline 
have experienced over time developments and ad-
vancements to minimize environmental impact. 

The global pesticide market is presently growing at a 
rate of 3.6% per year and is valued around $ 47 billion 
(BCC Research, 2010). This trend is in relation to the 
need of protecting the environment, farmlands and the 
agriculture crops (Oerke and Dehene, 2004) feeding a 
human population expanding at a rate around 1.15% per 
year (United Nations, 2011). 

In this context, environmentally sustainable improve-
ments in technology, agricultural techniques, and pest 
management are vital to allow farmers to expand crop 
production and animal farming on the limited land 
available. 

Since after the Second World War, the control of pests 
in agriculture and in animal husbandry has mostly relied 
on the intensive application of synthetic insecticides. De-
spite being a successful strategy, the concerns for the en-
vironment and human health have stimulated a continu-
ous research and development of more environmentally 
responsible alternatives reducing the risks connected 
with chemicals. Among these, the insect resistance de-
velopment, the destruction of non-target entomofauna 
including natural predators, parasitoids and pollinators, 
as well as the contamination of water and food. For these 
reasons the search for environmentally friendly control 
systems and their deployment in Integrated Pest Man-
agement strategies has been a main objective for both 
academia and industry during the last decades. As a re-
sult of these efforts, an increasing interest in the use of 
successful biological control strategies was recorded, 
with special regard to the formulation of specific insecti-
cides. This approach led to the progressive discovery and 
use of various entomopathogenic microbial species in-
cluding bacteria, virus, protozoa, fungi, microsporidia, 
nematodes (Vega and Kaya, 2012). Most of these ento-
mopathogens are normally able to persist in the envi-
ronment, to multiply in the host and to spread to other 

susceptible hosts. They have developed different strate-
gies to attack, to enter and to kill the host. Typically, in-
sect mycopathogens enter through the cuticle whereas 
virus, bacteria and protozoan enter through the midgut. 
Nematodes exploit natural openings on the host body. 
The present work focuses mainly on entomopathogenic 
bacteria, leaving aside the other insect pathogenic mi-
croorganisms that are anyway of significant importance 
for the future development of new bioinsecticides. 

On the other side, the purpose of the present paper is 
not to be an exhaustive review of all the novel bacterial 
species and strains that are being discovered and devel-
oped into products, but to give a timely picture of the 
cutting-edge advancements in this fast growing disci-
pline. In the envisioned, post-Bacillus thuringiensis era, 
some representative cases regarding emerging entomo-
pathogenic bacteria other than Bacillus are presented 
and discussed. These include the case of Brevibacillus 
laterosporus which is object of our research studies. 
 
 
Development of entomopathogenic bacteria for 
pest management 
 
Among the first significant experiences with microbial 
control methods are the studies with the entomopatho-
genic fungus Beauveria bassiana (Balsamo) Vuillemin 
at the end of the XIX century, whose bioinsecticidal ac-
tion is related to its conidia germination and ife penetra-
tion inside insect body (Pekrul and Grula, 1979). Later 
on, different fungal species were involved in biological 
control experimentations producing variable results. 
Among these, species belonging to the genera Ascher-
sonia, Agerata, Verticillium, Sphaerostilbe, Podonectria, 
Myriangium, Hirsutella, Metarhizium (Fawcett, 1944). 
The biological control paradigm changed some decades 
later, when the potential of entomopathogenic bacteria 
was discovered, especially associated to species belong-
ing to the genus Bacillus (Glare and O’Callagan, 2000). 
Initially, the species Paenibacillus (former Bacillus) 
popilliae Dutky was introduced for the management of 
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the Japanese Beetle Popillia japonica Newman (Stein-
haus, 1975), but more concrete results were achieved 
with the discovery of new Bacillus thuringiensis (Bt) 
strains showing high toxicity against specific insects at 
competitive level compared to conventional insecticides 
in terms of efficacy and costs of production. The strain 
HD-1, belonging to subsp. kurstaki (De Barjac and 
Lemille, 1970), soon became the main commercial focus 
for the management of lepidopteran pests in agriculture 
and forestry. Beside it, today other strains are commer-
cially available, such as SA-11, SA-12, PB 54, ABTS-
351 and EG2348, all isolated from insects or soil, and 
expressing a range of different toxins mostly belonging 
to the Cry1 and Cry2 families. Subsequently, the discov-
ery of a Bt strain belonging to the subsp. israelensis (Bti) 
was followed by its commercialization for the manage-
ment of mosquitoes and simulids (Goldberg and Mar-
galit, 1977). Then, a particularly active strain of the 
subsp. tenebrionis was discovered and employed against 
coleoptera (Krieg et al., 1983). 

Undoubtedly, Bacillus thuringiensis is the species on 
which most of the scientific community and industry 
efforts have been focused. Main feature of this bacte-
rium is the production of parasporal bodies (crystals) 
containing specific insecticidal endotoxins (Cry pro-
teins) acting by ingestions through a pore-forming 
mechanism of action detrimental for the insect gut epi-
thelium (Pigott and Ellar, 2007). 

With reference to a strain-specific mode of action, Cry 
toxins act only if binding to gut receptors varying 
among insect species. For these reasons, an increasing 
number of cry genes have been identified and se-
quenced, and more genes continue to be discovered as 
new bacterial isolates are collected worldwide (De 
Maagd et al., 2003). Other protein toxins from Bt (i.e. 
Cyt, VIP) have been identified and their genes charac-
terized. As a result of this continuous search, an official 
international database including toxins and genes from 
Bt and other etomopathogenic bacteria is continuously 
being updated (Crickmore et al., 2006). 

Different studies to evaluate the effects of Bt toxins on 
both insect pests (Pérez-Guerrero et al., 2012) and on 
non-target species (Marchetti et al., 2012) are continu-
ously being conducted. 

Besides Bt, other Bacillus species have shown potential 
for insect pest management. This is the case of B. 
sphaericus that represents a heterogeneous group includ-
ing spherical endospore producing bacteria (Alexander 
and Priest, 1990). Strains belonging to this species are 
toxic against mosquitoes as a result of the production of 
parasporal crystals located within the exosporium and 
closely associated with the endospore. These parasporal 
bodies contain potent binary protein toxins (Bin), includ-
ing an equimolar ratio of the two homologous BinA and 
BinB, acting in a similar fashion as Cry proteins (Broad-
well and Baumann, 1987; Charles et al., 2000). During 
the vegetative phase, B. sphaericus is also capable to 
produce mosquitocidal toxins known as Mtx proteins. 

Homology among toxins from B. sphaericus and tox-
ins from Bt or other entomopathogenic bacteria has been 
shown, demonstrating their phylogenetic relationships 
and revealing a probable common co-evolution (de 

Maagd et al., 2003). 
There are many entomopathogenic bacteria that have 

shown potential against diverse insect pests, but have not 
achieved the same commercial success as Bt. Among 
these, the previously cited P. popilliae with P. lentimor-
bus, the causal agents of milky disease in phytophagous 
scarab larvae (Zhang et al., 1997), and Serratia entomo-
phila (Enterobacteriaceae) containing a specific plasmid 
(pADAP) encoding genes implied in the pathogenicity 
against the grass grub, Costelytra zealandica (White) 
(Coleoptera Scarabaeidae) (Jackson et al., 1992). 

The Paenibacillus genus, includes also P. larvae 
(White), the etiological agent of one of the main bacte-
rial honey bee pathology, the American Foulbrood, that 
is object of continuous research aimed at studying the 
host-pathogen relationship and developing new eco-
sustainable management methods (Gende et al., 2010; 
2011). 
 
 
Entomopathogenic bacteria other than Bacillus 
 
Among the wide variety of bacteria associated to in-
sects, there are different examples of entomopathogenic 
species other than Bacillus that have been studied at dif-
ferent levels. 

These include, for instance, Clostridium bifermentans 
serovar malaysia active against mosquitoes and blackflies 
(Nicolas et al., 1990). In this case, the mosquitocidal ac-
tivity has been associated to the production of a protein 
with homology to Bt delta endotoxins (Cbm71). To prove 
the role of this protein, the encoding gene was cloned and 
induced to be expressed by transformed Bt, which exhib-
ited toxicity against mosquitoes (Barloy et al., 1996). 

Another group of entomopathogenic bacteria with 
high interest is represented by the endosymbionts of in-
secticidal nematodes, especially the members of the 
genera Xenorhabdus and Photorhabdus. The first is as-
sociated to nematodes in the genus Steinernema, while 
the second colonize the intestines of Heterorhabditis 
species. Normally, after nematodes invade susceptible 
insect hosts, symbiotic bacteria are released in the 
hemocoel where they produce various virulence factors 
contributing to impair insect immune system and to kill 
the host. Comparative genomic studies on different 
Xenorhabdus and Photorhabdus species (X. nemato-
phila, X. bovienii, P. luminescens, P. asymbiotica) high-
lighted the presence of numerous genes implied in the 
insecticidal action (Chaston et al., 2011). 

Significant is also the case of Pseudomonas entomo-
phila, an ubiquitous bacterium showing insecticidal 
properties against insects in different orders and which 
has the capacity to trigger a systemic immune response 
in Drosophila melanogaster Meigen after ingestion 
(Vodovar et al., 2005). The whole genome of this bacte-
rium has been sequenced and different insecticidal toxin 
complexes have been identified (Vodovar et al., 2006). 

Due to specific biological and technical aspects, such 
as the specific mode of action, commercially available 
strains, including Bt, have their restrictions in terms of 
performance in field conditions. Therefore, the continu-
ous screening for new bacterial isolates is leading to the 
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discovery of novel environmentally safe microbial in-
secticides, which can create new opportunities for the 
management of certain insect pests. Three representa-
tive cases regarding emerging bacterial species are pre-
sented. 
 
Brevibacillus laterosporus 

Brevibacillus laterosporus Laubach is a spore former 
belonging to the B. brevis phylogenetic cluster and is 
morphologically characterized by the production of a 
canoe-shaped lamellar body attached to one side of the 
spore also after lysis of the sporangium (Shida et al., 
1996) (figure 1). It’s a natural inhabitant of water 
(Laubach, 1916), soil (Oliveira et al., 2004; Ruiu et al., 
2006), and has also been isolated from insects (McCray, 
1917). It’s biopesticidal potential has been reported 
against insects in different orders, such as Coleoptera 
(Boets et al., 2004), Lepidoptera (Oliveira et al., 2004), 
mosquitoes and black flies (Favret and Yousten, 1985; 
Rivers et al., 1991), house flies (Ruiu et al., 2006), 
against nematodes (Bone et al. 1991; Singer, 1996) and 
against phytopathogenic fungi (Saikia et al., 2011). This 
microrganism, can occasionally be found in honey bee 
larvae affected by European foulbrood (EFB), although 
it is considered to be just one of the secondary invaders 
encountered in the disease (Bailey, 1963; Gilliam and 
Valentine, 1976, Alippi, 1991). 

Different insecticidal toxins produced by diverse B. 
laterosporus strains have been identified and character-
ized against various targets. For instance, Bone et al. 
(1991) isolated from the spore a heat stable low molecu-
lar weight protein inhibiting nematode juvenile devel-
opment. Boets et al. (2004) highlighted the insecticidal 
role of secreted binary toxins (ISP1A and ISP2A) dis-
playing homology with Bt Cry proteins acting against 
different coleopteran species (Diabrotrica spp., Leptino-
tarsa spp. and Anthonomus spp.). 

More recently, certain mosquitocidal B. laterosporus 
strains were discovered to produce insecticidal crystals 
similar to those typical of Bt. Proteins contained in these 
parasporal bodies were isolated and correlated to the 
insecticidal action of these strains (Zubasheva et al., 
2010). Enhancement of this larvicidal activity was ob-
tained by bioincapsulation in Protozoa (Zubasheva et 
al., 2011). On the other side, the toxicity against flies is 
in relation to spores of strains lacking parasporal crys-
tals (Ruiu et al., 2007a). 

As a result of recent studies, the ultrastructural effects 
of this entomopathogenic species was shown against 
house fly larvae exposed to a B. laterosporus treated 
diet. The progressive symptomathology and midgut 
changes induced in intoxicated larvae are similar to 
those caused by Bt, thus suggesting a toxin mediated 
process involving the alteration of midgut epithelial 
membrane permeability leading to osmotic disorders, 
cell alteration and disruption (Ruiu et al., 2012). 

Promising field applications with experimental formu-
lations in dairy farms against flies have been carried out 
(Ruiu et al., 2008 and 2011). The safety of this bacte-
rium towards non-target species has also been investi-
gated (Ruiu et al., 2007b and c). 
 

Chromobacterium subtsugae 
Firstly isolated from forest soil in Maryland (USA), 

Chromobacterium subtsugae is a gram negative be-
taproteobacterium developing violet-pigmented colo-
nies, due to the production of violecein, a tryptophan 
derivative synthesized by different bacterial species 
(Hoshino et al., 2011). It was indicated as a novel spe-
cies, as a result of 16S rRNA gene sequencing and phe-
notypic characterization, which allowed to distinguish it 
from C. violaceum, a species that shares the ability to 
produce violacein (Durán and Menck, 2001). 

Its insecticidal potential by ingestion was initially 
proved against diverse insect species in different orders 
(i.e. Coleoptera, Lepidoptera, Hemiptera). These in-
cluded the Colorado potato beetle (Leptinotarsa decem-
lineata Say), the Western corn rootworm (Diabrotica 
virgifera Le Conte), the Southern corn rootworm (Diab-
rotica undecimpunctata Mannerheim), the small hive 
beetle (Aethina tumida Murray), the diamondback moth 
(Plutella xylostella L.) the sweet potato whitefly (Be-
misia tabaci Gennadium), the Southern green stink bug 
(Nezara viridula L.) (Martin et al., 2007a). In addition 
to mortality, significant sub-lethal effects, with special 
regard to feeding inhibition, were observed in most 
cases. Martin et al. (2007b) associated the insecticidal 
activity to either viable cells or cells killed by autoclav-
ing, thus suggesting a mechanism of action mediated by 
heat-stable toxins. The stability of toxic factors was 
proved to be maintained also after freezing or pH 
changes (Martin et al., 2007c). 

Successively, analytical studies on a crude extract 
combined with bioassays on the Beet Armyworm (Spo-
doptera exigua Hubner), confirmed the production of 
bioactive compounds during C. subtsugae stationary 
growth phase (Koivunen et al., 2009).  

The mode of action of this new entomopathogenic 
bacterium is complex and different are the metabolites 
that have recently been associated to the insecticidal ef-
fects (Asolkar et al., 2012). 

C. subtsugae strain PRAA4-1T has now been devel-
oped into a commercially available product (Grandevo, 
Marrone Bio Innovations Inc.) for the management of a 
broad spectrum of chewing and sucking insect species. 
 
 

 
 

Figure1. Brevibacillus laterosporus sporangium. 
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Yersinia entomophaga 
This recently discovered species was isolated from dis-

eased larvae of the New Zealand grass grub, Costelytra 
zealandica White (Coleoptera Scarabaeidae) (Hurst et 
al., 2011a). It is a non-spore-forming bacterium that se-
cretes a multisubunit toxin complex (Yen-Tc) showing 
homology with toxin complexes produced by Photorab-
dus spp. Proteins in the complex include three protein 
families termed A (YenA1, YenA2), B (YenB) and C 
(YenC1, YenC2) and two chitinases (Chi1 and Chi2) 
with high endochitinase activity (Hurst et al., 2011b). 
The structure of chitinases has been analyzed and differ-
ent are the hypothesis formulated to explain their role in 
the toxin complexes. For instance, they may assist peri-
trophic membrane degradation in the gut, opening the 
way to ABC toxins, or they may play a role in the post-
mortem degradation of insects, or they may anchor the 
toxin complex to the peritrophic membrane, avoiding it 
to be washed through the gut (Busby et al., 2012). 

Toxin complex (Tc) proteins are a class of bacterial 
proteins exhibiting insecticidal activity. They were first 
discovered in Photorhabdus luminescens, an entomopa-
thogenic nematode symbiont (Bowen et al., 1998), then 
Tc-like proteins were identified on other entomopatho-
genic bacteria such as Serratia entomophila (Hurst et 
al., 2000) and the nematode symbiont Xenorhabdus 
nematophila (Morgan et al., 2001). In the case of Y. en-
tomophaga, 3D structure studies of the toxin complex 
showed that subunits YenA1 and YenA2 form the basis 
of a five fold symmetric assembly, while subunits B and 
C form a surface accessible region and are the main tox-
icity determinants. The chitinases decorate the surface 
of the TcA scaffold (Landsberg et al., 2011). These tox-
ins have a broad insecticidal range of activity including 
Coleoptera and Lepidoptera. Histopathological studies 
on the effects caused by the ingestion of Yen-Tc re-
vealed the progressive disorganization and deterioration 
of the midgut epithelium of C. zealandica. These effects 
are reminiscent of those previously reported for other Tc 
producing bacteria, like P. luminescens and X. nemato-
phila (Marshall et al., 2012). 

Recently, the insecticidal activity of formulations con-
taining Y. entomophaga against the pasture pest porina 
(Wiseana spp. larvae) has been reported highlighting its 
persistence and survival in the field, thus suggesting its 
use as a microbial alternative for the management of 
porina (Ferguson et al., 2012). 
 
 
Future directions and research needs 
 
The recent achievements of the scientific community 
working in the area of insect pathology are contributing 
to increase the effort directed toward the discovery of 
new bacterial-based insecticides. 

As recently reported by BCC Research (2010), the 
whole biopesticide market, including both microbial 
products and natural biochemicals, is estimated to grow 
at a 15.6% compound annual growth rate (CAGR) and 
in line with a recent report of Global Industry Analysts 
(2012), it is forecast to reach $ 2.8 billion by the year 
2015. 

In this scenario the interest in bioinsecticides is sig-
nificantly growing, also as a result of the withdrawal of 
many synthetic pesticides and the high cost for the de-
velopment of new ones, the new regulations reducing 
the maximum residue levels (MRLs) for synthetic pesti-
cides and favouring the registration of low risk sub-
stances for pest control (i.e. EC Regulation No. 
1107/2009). In addition, the implementation of Inte-
grated Pest Management becomes compulsory by 2014 
(EC Directive 2009/128). 

Despite the success of many available products, the 
use of microbial based biological control is still rele-
gated to niche contexts, in relation to the previously de-
scribed highly specific mode of action and the narrow 
efficacy spectrum. Biopesticides use in combination or 
rotation with synthetic pesticides is likely to be en-
hanced in the near future, but more research is needed to 
come up with innovative solutions that can really meet 
farmers and regulator needs in terms of effectiveness 
and environmental sustainability. At the present state of 
the art, biopesticides have not yet achieved their poten-
tial due to the lack of truly transformational associated 
technologies that may enhance their effectiveness (Glare 
et al., 2012). 

Significant is that the most original findings are the 
results of screening programmes involving the isolation 
of new microorganisms from the natural environment. 
This method is permitting to discover and name new 
entomopathogenic bacterial species, such as the re-
ported C. subtsugae and Y. entomophaga. Through this 
approach, leveraging natural bacterial biodiversity, 
forthcoming original discoveries are expected. 

On the other side, the modern “omics” technologies, 
including whole genomic sequencing, allow to better 
access different biological aspects and clarify the ento-
mopathogen-host interaction up to the molecular level. 

Do new research achievements in the field announce a 
post-Bt era, with a new generation of broad spectrum 
entomopathogens? 
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