Identification of different phytoplasmas infecting grapevine in Turkey

Didem Canik1, Filiz Ertunc1, Samanta Paltrinieri2, Nicoletta Contaldo2, Assunta Bertaccini2

1Faculty of Agriculture Plant Protection Department, Ankara University, 06110, Diskapi, Ankara, Turkey
2Dipartimento di Scienze e Tecnologie Agroambientali, Patologia vegetale, Alma Mater Studiorum-University of Bologna, Bologna, Italy

Abstract

Grapevines with severe redness and inward curling of leaves were collected from the main viticulture production areas, Aegean, Central Anatolia and Western Anatolian parts of Turkey. Collected samples were subjected to nucleic acid extraction followed by nested PCR/RFLP analyses that allow to identify different phytoplasmas in symptomatic grapevines. The majority of samples were infected with phytoplasmas belonging to 16SrXII group and referable to the ‘bois noir’ phytoplasmas, while in some samples 16SrIX or 16SrI-B phytoplasmas were identified. The 16SrIX phytoplasmas are firstly reported in grapevine.

Key words: Grapevine, PCR/RFLP analyses, phytoplasma identification, ‘bois noir’.

Introduction

Turkey is one of the nations native to grapevine in the Middle East, where table and vine grape varieties have been grown in Thrace, Central Anatolia, Meditarrenean, Aegae and Eastern Anatolia regions of Turkey. The country is the 4th and 6th in the world, respectively, for grapevine cultivation and production of table and wine grape. Grapevine is affected worldwide by several phytoplasma diseases named grapevine yellows. Phytoplasmas belonging to different ribosomal groups were identified such as aster yellows (16SrI group), elm yellows (16SrV group) and stolbur (16SrXII group), together with 16SrII, 16SrIII, 16SrVII and 16SrX groups in different countries (Varga et al., 2000, Boudon-Padieu, 2005, Gajardo et al., 2009, Dukud et al., 2004, Milkus et al., 2005). Two of these phytoplasmas are associated with specific diseases such as ‘flavescence dorée’ (16SrV-C and V-D subgroups) and ‘bois noir’ (subgroup 16SrXII-A). Grapevines with severe redness and inward curling of leaves were observed in the main viticulture production areas of Turkey therefore surveys were carried out to verify phytoplasmas presence and identity.

Materials and methods

The main viticulture production areas, Aegean, Central Anatolia and Western Anatolian parts of Turkey, were surveyed in the summer of 2009 and 167 leaf samples were collected from symptomatic plants. Severe redness and inward curling of leaves were the major symptoms of the collected plants. Nucleic acid was extracted from midribs according to a chloroform/phenol protocol (Prince et al., 1993). The phytoplasma strains stolbur (STOL, ribosomal subgroup 16SrXII-A), aster yellows (PRIVA, ribosomal subgroup 16SrI-B) and Naxos (ribosomal subgroup 16SrIX-C) maintained in collection in periwinkle were employed as reference strains in restriction fragment length polymorphism (RFLP) analyses. Direct PCR with ribosomal P1/P7 universal primer pair, followed by nested PCR with R16F2n/R2 (Gundersen and Lee, 1996), and R16(I)F1/R1 and R16(V)F1/R1 (Lee et al., 1994) primer pairs were carried out. R16(I)F1/R1 products were subjected to RFLP analysis with Trul and HhaI. One uncloned R16F2/R2 amplicon was purified using Qiagen PCR Purification Kit (Qiagen GmbH, Hilden, Germany) and sequenced in both directions with R16F2 and R16R2 primers, using the BIG DYE sequencing terminator kit (PE Biosystems, Warrington, UK) for molecular charactrization. The obtained sequence was aligned by using Clustal W and BioEdit (Hall, 1999) softwares and deposited in GenBank.

Results

R16F2n/R2 amplicons of the expected size were obtained for half of the samples tested. The majority of positive samples exhibited Trul RFLP pattern indistinguishable from those of 16SrXII ribosomal group. These phytoplasmas are also referred to as stolbur phytoplasmas, and reported to be associated in grapevine to ‘bois noir’ disease. Phytoplasmas belonging to aster yellows group (16SrI-B) were also identified by RFLP analyses on amplicons obtained with primer R16(I)F1/R1 in a few cases with Trul (figure 1) and HhaI (data not shown). In some of the symptomatic samples 16SrIX phytoplasmas were identified (data not shown). One of the latter samples showing 16SrIX phytoplasma infection was employed for sequencing, and the obtained sequence of 1,063 bp was deposited in the GeneBank under ID HQ714331. This sequence showed a 99% identity with that of pigeon pea witches’ broom phytoplasma and other phytoplasma members of group 16SrIX, including the strains related to ‘Candidatus Phytoplasma phoenicium’ present in the Genbank. Comparison of the obtained sequence with those available in GenBank for 16SrIX group phytoplasmas allow to verify that the sequence show five mismatch with other sequences.
Discussion

‘Bois noir’ disease is widespread and occurs from Spain to Ukraine and from Germany and Northern France to Lebanon and Israel (Maixner, 2011). The disease was also recently reported in Turkey (Canik et al., 2011). Stolbur group-related grapevine phytoplasms have also been recently been reported from Iran (Karimi et al., 2009) and China (Duduk et al., 2010). Aster yellows phytoplasmas were reported in grapevines in several countries after the first finding in Italy (Alma et al., 1996). The 16SrIX group phytoplasmas are severely infecting plants in different regions, especially in those bordering Turkey (Choueiri et al., 2001; Abou-Jawdah et al., 2002) so their first identification indicates the susceptibility of the species to this pathogen and the urgent need to further verify its presence in grapevine to prevent any further epidemic. Work on finer classification of the identified phytoplasmas, as well as their further detection in grapevine and in other host species and in potential insect vectors, is in progress.

Acknowledgements

The authors are grateful to Turkish Scientific and Technological Research Council for supporting this research by Project coded 109 O 005.

Part of the work was carried our during the COST-STSM-FA0807-090110-000000 in the frame of the COST Action FA0807 “Integrated Management of Phytoplasma Epidemics in Different Crop Systems”.

References


Lee I.-M., Gundersen D. E., Hammond R. W., Davis R. E., 1994.- Use of mycoplasmalike organism (MLO) group-specific oligonucleotide primers for nested-PCR assays to detect mixed-MLO infections in a single host plant.- Phytopathology, 84: 559-566.


Corresponding author: Didem Canik, (e-mail: didemcanik@gmail.com; dcanik@agri.ankara.edu.tr), Ankara University, Faculty of Agriculture, Department of Plant Protection, 06110, Ankara, Turkey.

Figure 1. RFLP profiles of R16(DF1/R1 amplicons after Trul digest. Acronyms: Gr., grapevine sample; PRIVA, primula yellows from Germany (16SrI-B); STOL, stolbur from pepper from Serbia (16SrXII-A); P, marker ΦX174 HaeIII digested.