Molecular identification of 16SrIII and 16SrXII phytoplasma groups in Chenopodium album in Czech Republic

Dana SAFAROVA, Pavla VALOVA, Pavel FLIDR, Milan NAVRATIL
Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic

Abstract
Chenopodium album L. plants showing symptoms of leaf yellowing, small leaves development, proliferation, plant and inflorescence stunting were examined for phytoplasma infection using PCR with universal phytoplasma primers R16F1/R0 and fU5/rU3. Only in two samples out of the 38 tested, the phytoplasma infection was confirmed. RFLP and sequence analyses based on partial 16S rDNA fragment confirmed that C. album is harbouring phytoplasmas belonging to 16SrIII (X-disease) group. This species has been also found infected with phytoplasmas belonging to 16SrXII group in Czech Republic.

Key words: weed, lambsquarters, phylogeny, X-disease, stolbur, phytoplasma.

Introduction
There are only a few data concerning the phytoplasma occurrence in Chenopodium species. Firstly the phytoplasma infection of Chenopodium album L. was reported by Seruga et al. (2003) during survey for phytoplasma detection in Croatian vineyards; phytoplasmas were identified by the use of nested PCR and RFLP analyses as belonging to the 16SrII group. Tolu et al. (2006) obtained one positive out of seven Chenopodium spp. samples collected during the vineyards surveys in Italy and classified this phytoplasma into the subgroup 16SrII-E by RFLP analyses. Chenopodium murale L. was also identified as an alternative phytoplasma reservoir for the 16SrII phytoplasma associated with a lime decline disease in Saudi Arabia (Alhudaib et al., 2009).

The aim of this work was to characterise phytoplasmas detected in C. album collected within tomato and pepper fields in the Czech Republic.

Materials and methods
Since the beginning of vegetation period from 2008 to 2010, 38 samples from C. album plants were collected in the horticultural region of south Moravia (Lednice) within tomato and pepper fields. The plants exhibited leaf yellowing, small leaves development, proliferation, plant and inflorescence stunting (figure 1).

The total DNA extraction was performed according to an enrichment procedure (Ahrens and Seemüller, 1992). DNA samples were subjected to PCR analysis with phytoplasma primer pairs in 16S rRNA gene. Nested-PCR assays were performed with primers pairs R16F1/R0 followed by fU5/rU3 (Lee et al., 1995; Lorenz et al., 1995). Identification of phytoplasmas was carried out by RFLP analyses using AluI, MseI, and Rsal according to Lee et al. (1998).

PCR products were directly cloned using pGEM-T (Promega) cloning kit, following the instructions of the manufacturer. Nucleotide sequences were obtained on automated ABI Prism 3130 Genetic analyzer (Perkin Elmer Applied Biosystems, Lincoln). Sequence data were analyzed by DNASTAR programme (Lasergene). The sequences were compared with those available in the GenBank using BLAST algorithm version 2.2.25.

Results
In two out of the 38 examined samples the presence and identity of phytoplasmas was confirmed by PCR/RFLP and sequence analysis. Products of expected length were obtained in fU5/rU3 PCR (879 bp). No amplification was observed in samples of healthy plant and water controls. The samples showed two distinct profiles in RFLP analyses, one corresponding to phytoplasmas belonging to 16SrIII and the second to 16SrXII ribosomal groups.

The identity of phytoplasma strains was confirmed by sequence analysis of fU5/rU3 PCR fragments. Strain number 2692 showed the 99% identity with stolbur phytoplasmas from grapevine from Italy, CH-1 (Acc. No. HQ589193), from potaoes from Russia, RuS93 (GU004375) and from tomato from Italy, PTV (GU004374); strain number 2909 showed 99% identity with X-disease phytoplasmas - Cirsium strain (FN298626) and Taraxacum strain (FN298621) from Finland and clover phyllody phytoplasma (HQ589196) from Italy.

Discussion
These findings agree with published results where the Chenopodium spp. is described as a sporadic host of different phytoplasmas. Up to date Chenopodium plants infected by 16SrIII group phytoplasmas were only in vineyards in Croatia (Seruga et al., 2003). Other Chenopodium spp. showing yellowing and stunting associated with phytoplasmas belonging to 16SrII group have been reported from vineyard in Italy (Tolu et al., 2006) and in case C. murale from citrus farm in Saudi Arabia (Alhudaib et al., 2009). Although Özdemir et al. (2009) reported C. album L. as an alternative host of Phytoplasma detection and characterization II
tomato phytoplasmas, our results represent the first molecular identification of phytoplasma belonging to 16SrXII group in lambsquarters. The sporadic detection of phytoplasma infected lambsquarters plants in the locality with mass occurrence of phytoplasma diseases (Navratil et al., 2009) is probably connected with the low attractivity of weed plants for insect vectors compared to pepper and tomato plants.

Occurrence of phytoplasmas belonging to 16SrII group was previously described in Czech Republic in Trifolium spp. (Fránová et al., 2004), where it is not very common. Phytoplasmas belonging to the 16SrXII group are more common, causing the local epidemics in solanaceous crops (Fránová et al., 2009; Navrátil et al., 2009).

Figure 1. C. album plants. A. Infected plants showing leaf yellowing, small leaves development, proliferation, plant and inflorescence stunting. B. Healthy plant.

Acknowledgements

The work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within COST project no. OC10034 and project MSM6198959215.

References


Corresponding author: Dana Safarova (e-mail: dana.safarova@upol.cz), Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc, Slechtitule 11, 783 71, Olomouc, Czech Republic.