Susceptibility of *Paenibacillus larvae* isolates to a
tetracycline hydrochloride and Cinnamon
(*Cinnamomum zeylanicum*) essential oil mixture

Liesel Brenda Gende1,2,3, Natalia Fernandez1,3, Franco Buffa4, Luca Ruiu4, Alberto Satta4, Rosalia Fritz2, Martin Javier Eguraras1,3, Ignazio Floris4

1Departamento de Biología, Universidad Nacional de Mar del Plata, Argentina
2Departamento de Química, Universidad Nacional de Mar del Plata, Argentina
3CONICET, Comisión Nacional de Investigaciones Científicas y Técnicas, Argentina
4Dipartimento Protezione Pianta, Sezione Entomologia, Università degli Studi di Sassari, Italy

Abstract

The antimicrobial activity of tetracycline hydrochloride (OTC) and cinnamon (*Cinnamomum zeylanicum* Nees) essential oil (CEO) was evaluated against six different isolates of *Paenibacillus larvae* (White), the causal agent of American Foulbrood (AFB) disease in honey bee colonies. The bacteria isolates were collected from different localities of Argentina. Minimal inhibitory concentration (MIC) in MYT broth by the tube dilution method was evaluated for each substance and for the combinations of both antimicrobials using Krogstad and Moellering technique in order to establish the possible synergistic effects between these substances. OTC mean MIC values were of 3.67 ± 1.80 µg/ml, while the mean MIC values obtained for CEO were of 41.67±19.17 µg/ml. An inhibitory synergetic effect between these substances was observed with FIC index < 1 on 50% of the on *P. larvae* isolates.

Key words: Tetracycline hydrochloride, cinnamon essential oil, antimicrobial activity, *Paenibacillus larvae*.

Introduction

The bacterial pathogen *Paenibacillus larvae* (White), is the etiological agent of American foulbrood (AFB) disease, an extremely contagious disease of honey bee brood (Genersch et al., 2006). AFB preventive and curative treatments usually consist in the application of antibiotics, such as tetracycline hydrochloride, but their extensive use have led to the accumulation of residues (Bogdanov, 2006) in honey and other bee products, decreasing their quality and making their marketing more difficult. Besides residue accumulation, antibiotic-resistant isolates of *P. larvae* have been detected in many countries (Alippi, 1996; Miyagi et al., 2000; Evans, 2003). The concern for problems arising from microbe resistance is growing and the outlook for the future use of antimicrobial drugs is still uncertain. Therefore, actions must be taken to reduce this problem, for example optimizing the use of antibiotics when legally permitted and/or developing new drugs, either synthetic or natural (Nascimento et al., 2000), potentially efficient in the control of this very serious honeybee disease. The use of essential oils, with known antimicrobial properties, can be of great significance in apiary treatments. Since 1988 various studies were carried out to evaluate the effects of diverse essential oils against *P. larvae* (Carta and Floris, 1989; Floris and Carta, 1990; Alippi et al., 1996; Floris et al., 1996; Bazzoni and Floris, 1999). In the last few years, a number of studies have been conducted to verify the efficiency against *P. larvae* (Fuselli et al., 2008, Gende et al., 2009a, 2009b) of cinnamon essential oil and its main components (Gende et al., 2008a; 2008b; Gende, 2009). The aim of this study was the *in vitro* evaluation of the antimicrobial activity of a tetracycline hydrochloride (OTC) and cinnamon essential oil (CEO) mixture against *P. larvae* isolates, aiming to develop an effective combination of OTC with CEO in apiary, resulting in an overall reduction in the antibiotic employment for apicultural management, consequently reducing the risks of residues accumulation in beehive products and of bacterial resistance appearance, with special regard to the countries where the OTC use is permitted for the control of this bacterial disease.

Materials and methods

Bacterial biomass preparation

The bacterial isolates of *P. larvae* were collected from brood combs of bee hives with clinical symptoms of American foulbrood located in Buenos Aires province (Argentina): Mar del Cobo, Sierra de los Padres, La Plata, Vidal, Mar del Plata and Ascasubi (corresponding to strain collection of Arthropods Laboratory, School of Natural and Exact Sciences, National University of Mar del Plata). Isolation was achieved on MYPGP agar (Dingman and Stahly, 1983) and *Paenibacillus alvei* (Cheshire et Cheyne) growth inhibition was ensured by the addition of 9 µg/ml of nalidixic acid. Plates were incubated under microaerobic conditions (5-10 % of CO2) and strains were identified using biochemical tests (Gordon et al., 1973; Alippi, 1992). Pure strains were maintained on MYPGP agar with 15% v/v glycerol until used. Vegetative cells of *P. larvae* previously cultivated on MYPGP agar for 48 h at 35 ± 0.5 °C were suspended in double distilled sterile water and the suspension was standardized according to FDA method (Merker, 1998). Concentration was adjusted to 0.5 of Mac Farland scale for measuring antimicrobial activity with serial dilution.
Evaluation of the antimicrobial activity

The classification of susceptible was made based on the methodology described by Alippi et al. (2007). The CEO was mixed in water and emulsified with 8% (v/v) propylene glycol (1,2-propanediol, Budavari et al., 1996), and the OTC antibiotic was mixed in water, separately. To evaluate the combination of these two antimicrobials, we used Krogstad and Moellering technique (Koneman et al., 1999), known as checkerboard test. Dilutions of each antimicrobial were chosen in the middle of the concentration of each drug, 9 each, in relation to previous studies (Gende et al. 2008b, Gende 2009). The concentrations evaluated were in the range of 5 dilutions below the MIC, the MIC and twice over the MIC (Eliopoulos and Moellering, 1996). For broth microdilution, 100 µl of MYT broth (Gende et al., 2008c) were placed in each of the microtitre plates. Drug A (OTC) was diluted in series in the direction of the ordinates, while the B (CEO) was diluted along the abscissas axis. The resulting grid provided all possible combinations of two antibiotics, from a well that contained the highest concentration of each to the lowest concentration in the opposite corner (figure 1). Then, microbial biomass suspension was added to each well. Inhibitory concentration was directly evaluated by turbidity observation. Positive and negative controls (with microorganisms and water, respectively) were used. Microtiter plates were incubated at 35 ± 0.5 ºC for 48 h. Antimicrobial activity was tested by triplicate analyses. When two antibiotics are given together, their effects can be: a) additive, when corresponding to the sum of the effects that each of them produces separately; b) antagonistic, when resulting in a lower effect than the sum of the single effects produced by each agent separately; c) synergistic, when the resulting effect is greater than the sum of the separate effects of each drug. The interpretation of results in the evaluation of these two antimicrobial products was based on the calculation of fractional inhibitory concentrations (FIC) and FIC index (Davidson and Parrish, 1989): FIC A = (MIC of A in the presence of B) / (MIC of A); FIC B = (MIC of B in the presence of A) / (MIC of B); FIC index = FIC A + FIC B; FIC index value allow to determine whether the mixture is additive, antagonistic or synergistic. A mixture is additive if the FIC index value is equal or approximately equal to 1; antagonistic if FIC index is > 1; synergistic if FIC index is < 1.

Results and discussion

Results for antimicrobial activity of OTC and CEO, alone or in combination, against P. larvae strains isolated from different Argentinean geographic areas are shown in table 1. The majority of the analyzed isolates (66.7%) can be considered susceptible to the action of OTC MIC values < 4 µg/ml. While, the remaining percentage (33.3%) showed MIC values of 6 µg/ml, being considered as Intermediate Alippi et al. (2007). On the bases of the calculated FIC index values for each isolates, it was determined that for 33.3% of the strains the antimicrobial effect against P. larvae was antagonistic, with FIC index values > 1; for the blend, the effect was additive, with an FIC index value ≈ 1 in 16.7% of cases; finally, synergism was observed, with FIC < 1, for 50% of the isolates. This variability in results could be mainly due to a difference in the OTC antibiotic susceptible levels.

Figure 1. Checkerboard titration to evaluate antimicrobial synergism. Each box represents a tube or microtiter tray.
that some of the isolates analyzed were intermediate to were similar to those found by Gende. Results of CEO antimicrobial activity against Bacillus larvae were obtained for 33% of the isolates studied. In practice, this variability suggests to conduct laboratory tests before adopting antibiotic cinnamon essential oil mixture application as an effective alternative to control the AFB in apiary.

Acknowledgements

This study was supported by a grant from the Italian Ministero dell’Istruzione, dell’Università e della Ricerca: Research Program PRIN 2008 “Discovery and evaluation of new microbial and vegetable biopesticides for the natural insect pests control” (Coordinator: Prof. I. Floris).

References

ALIPPI A. M., 1992. - Deteccion de Bacillus larvae en poblaciones mixtas de esporas bacterianas a partir de restos larvales. - Microbiologia SEM, 8: 115-118.

Table 1. Antimicrobial activity of oxitetracycline, C. zeylanicum essential oil and of both substances together against P. larvae strains isolated from different Argentinean geographic areas.

| MIC values were in µg/ml expressed as mean and standard deviation values; FIC A = (MIC of A in the presence of B) / (MIC of A); FIC B = (MIC of B in the presence of A) / (MIC of B); FIC index = FIC A+ FIC B. |
|---|---|---|---|---|---|---|
| **Antimicrobial agent** | **P. l/Cb** | **P. l/SdP** | **P. l/LP** | **P. l/LV** | **P. l/TP** | **P. l/As** |
| **OTC** | **MIC** | **FIC A** |
| OTC | 3 ± 0 S | 0.13 | 3 ± 0 S | 0.06 | 2 ± 0.87 S | 0.38 | 2 ± 0.87 S | 0.09 | 6 ± 0 I | 1 | 6 ± 0 I |
| Cinnamon | 66.67 ± 28.87 | 33.33 ± 14.43 | 41.67 ± 14.43 | 0.02 | 1 | 33.33 ± 14.43 | 0.05 | 0.05 | 0.06 |
| **FIC index** | < 1 Sy | < 1 Sy | ≈ 1 Ad | < 1 Sy | > 1 An | > 1 An |

1 Antimicrobial activities were determined by triplicate analyses.

S: OTC sensible; I: OTC intermediate; Sy: synergistic effect; Ad: additive effect; An: antagonistic effect.

PICCINI C., ZUNINO P., 2001.- American Foulbrood in Uruguay: Isolation of Paenibacillus larvae larvae from larvae with clinical symptoms and adult honeybees and susceptibility to oxytetracycline.- Journal of Invertebrate Pathology, 78: 176-177.

Corresponding author: Alberto Satta (albsatt@uniss.it), Dipartimento di Protezione delle Piante, Sezione di Entomologia agraria, Università di Sassari, via E. De Nicola, 07100 Sassari, Italy.

Received February 22, 2010. Accepted September 29, 2010.