Molecular evidence for the presence of ‘Candidatus Phytoplasma cynodontis’, the Bermuda grass white leaf agent, in India

Govind P. Rao1, Sri Krishna Raj2, Sunil K. Snehi2, Smriti Mall1, Maneesha Singh1, Carmine Marcone3
1Sugarcane Research Station, Kunraghat, Gorakhpur, UP, India
2Plant Molecular Virology Laboratory, National Botanical Research Institute, Lucknow, UP, India
3Dipartimento di Scienze Farmaceutiche, Università degli Studi di Salerno, Fisciano (Salerno), Italy

Abstract

White leaf-affected Bermuda grass plants collected in eastern Uttar Pradesh province of India were examined for phytoplasmal infections with PCR assays using universal phytoplasma primers directed to rDNA sequences. All symptomatic plants examined tested positive. By sequence analysis of the amplified 16S rDNA and 16S/23S rDNA spacer region sequences, the detected phytoplasma proved to be a strain of ‘Candidatus Phytoplasma cynodontis’, the causal agent of Bermuda grass white leaf disease.

A yellows disease of Bermuda grass was already known to occur in India. However, molecular detection and characterization of the presumable causal agent had previously not been reported.

Key words: ‘Candidatus Phytoplasma cynodontis’, Bermuda grass white leaf, ribosomal DNA, Cynodon dactylon.

Introduction

Bermuda grass white leaf (BGWL) is a destructive phytoplasmal disease of Bermuda grass (Cynodon dactylon), which is known to occur in several Asian countries, Sudan, Italy, Cuba and Australia (Jung et al., 2003; Marcone et al., 2004; Arocha et al., 2005a). The causal agent, the BGWL phytoplasma, which is a member of the phylogenetic BGWL phytoplasma group or 16SrXIV group, is a discrete taxon at the putative species level, for which the name ‘Candidatus Phytoplasma cynodontis’ has been adopted (Marcone et al., 2004).

The disease is characterized by extensive chlorosis, proliferation of axillary shoots, bushy growing habit, small leaves, shortened stolons and rhizomes, stunting and death of the plants. In the early stage of the disease, light green to yellow streaks on the leaves are also present. Also, in white leaf-diseased Bermuda grass plants, the ‘Candidatus Phytoplasma graminis’ which is a member of the 16SrXVI group was identified in Cuba, whereas a strain belonging to aster yellows group (16Sr1) subgroup 16Sr-L, was transmitted from Bermuda grass showing typical BGWL symptoms, in Thailand, to the experimental phytoplasma host Catharanthus roseus (periwinkle) by means of dodder (Marcone et al., 2000; Arocha et al., 2005b).

A disease similar or identical to BGWL, named yellow leaf, was reported to occur in India (Rishi, 1978). This report is based on symptomatology, temporary remission of symptoms after tetracycline treatment of affected plants and electron microscope observations. However, molecular data on the identity of the presumable causal agent and its phylogenetic relatedness to other phytoplasmas have not yet reported. In the work presented here, molecular technologies were employed to detect and identify the phytoplasma infecting Bermuda grass in India.

Materials and methods

Samples from diseased Bermuda grass plants showing typical white leaf symptoms and from non-symptomatic plants of the same species were collected during spring 2007 in several locations near Gorakhpur, eastern Uttar Pradesh. Young shoots including leaves were examined. Total DNA was extracted from approximately 1 g of tissue employing a phytoplasma enrichment procedure as described previously (Ahrens and Seemüller, 1992). For amplification of phytoplasmal ribosomal DNA (rDNA) by PCR assays, the universal phytoplasma primer pairs P1/P7 and P4/P7 (Schneider et al., 1995), were used. Primers P1/P7 amplify a fragment of approximately 1,800 bp in length extending from 5’ end of the 16S rRNA gene to the 5’ region of the 23S rDNA, thus including the 16S/23S rDNA spacer region, whereas the primer P4, in combination with P7, amplifies a fragment of about 530 bp. PCR assays were performed either as one-round PCR (direct PCR) using the primer pair P1/P7 or P4/P7, or as nested PCR by re-amplifying the P1/P7 products with the primer pair P4/P7. For sequencing, PCR products (approximately 500 bp) were sequenced as the expected amplified sequences were excised from the gel and eluted using the QiAquick gel extraction kit (Qiagen). DNA fragments were either sequenced directly or cloned prior to sequencing. For cloning, DNA fragments were ligated into plasmid vector pGEM-T (Promega) and recombiant plasmid used to transform Escherichia coli strain DH5α. Selected recombinant clones were screened for phytoplasmal rDNA inserts by PCR using the primer pair P4/P7. Plasmid DNA was purified using the NucleoSpin system kit (Macherey-Nagel). Sequencing of both strands was performed by ABI’s AmpliTaq FS dye terminator cycle sequencing chemistry, based on Sanger’s Sequencing method, in an automated ABI
16S/23S rDNA spacer region of BGWL-In strain is don'tis', the causal agent of BGWL disease, in white strains examined.

discuss the value of 99.7% with the reference strain, BGWL-C1, particular, strain BGWL-In shared a sequence similarity which varied from 99.2% (Iranian strain, GenBank accession no. AJ550984, AJ550985, AJ550986, AF100412, AF248961, Y14645, Y15868 and DQ195215, respectively) as well as to date palm white tip die-back (DP-WTD) and date palm slow decline (DP-SD) phytoplasmas (Marcone et al., 2004), whereas it showed a sequence similarity of 99.2% with BGWL strains from China and Iran (GenBank accession nos. AF025423 and DQ195216, respectively) as well as to carpet grass white leaf (CGWL) and brachiaria white leaf (BraWL) phytoplasmas (Marcone et al., 2004). The 16S/23S rDNA spacer region of BGWL-In strain is about 250 bp in length and contains the gene encoding tRNA

Discussion

With PCR assays using universal phytoplasma primers directed to rDNA sequences, and sequence analysis of amplified DNA, we identified a strain of ‘Ca. P. cynodontis’, the causal agent of BGWL disease, in white leaf-affected Bermuda grass plants in India. The data obtained further show that at 16S rDNA and 16S/23S rDNA spacer region sequence level, Bermuda grass-infesting phytoplasmas of the BGWL phytoplasma group, occurring in various geographical areas, are largely identical and represent a distinct taxonomic entity, i.e., the ‘Ca. P. cynodontis’. Also, this is the first report from India on molecular detection and characterization of phytoplasmal infections in Bermuda grass.

References


Corresponding author: Carmine MARCONE (e-mail: cmarcone@unisa.it), Dipartimento di Scienze Farmaceutiche, Università degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Salerno), Italy.