EDISON PASQUALINI, CRISTINA BARBARA, ANGELA ANTROPOLI, GIAMPIERO FACCIOLI
Istituto di Entomologia “G. Grandi”, Università di Bologna

Indagini sulla distribuzione della popolazione, sulla dimensione del campione e sulle tecniche di campionamento per *Zeuzera pyrina* L. (Lepidoptera Cossidae).

INTRODUZIONE

Zeuzera pyrina L. (Lepidoptera Cossidae) (rodilegno giallo) è una specie xilofaga e polifaga dannosa a molte piante da frutto (melo, pero, susino, ciliegio, olivo, ecc.) ed inoltre è comune su numerose piante forestali. In Emilia-Romagna compie una generazione in un anno, tranne una piccola percentuale che ne impiega due (Castellari, 1986). I danni vanno, col progredire dell’infestazione, dal disseccamento di foglie e apici vegetativi, a quello di gemme, lambrede e brindilli, fino alla morte di interi rami e quindi di piante. Particolarmente gravi possono essere gli attacchi sui piante giovani o in allevamento, alle quali una sola larva può essere fatale. Nelle zone a frutticoltura intensiva questa specie è sempre stata presente, spesso associata a *Cossus cossus* L. (Lept., Cossidae), in particolare in aziende o areali nei quali è stato fatto uso considerevole di insetticidi a largo spettro d’azione. La rarefazione di predatori è da considerarsi, infatti, la principale causa di incremento dei danni riscontrati in alcuni frutti.

I metodi di difesa chimica, microbiologica o meccanica non si sono dimostrati efficaci e risolutivi nella limitazione delle popolazioni. Un notevole interesse sembra assumere l’impiego di trappole innescate con feromoni sessuali di sintesi. Esse sono determinanti per la scelta del momento di intervento con insetticidi, fra i quali alcuni appartenenti al gruppo dei chitino-inibitori sembrano essere molto efficaci (Pasqualini, 1993; Pasqualini et al., 1993). Inoltre alcune osservazioni sperimentali non ancora concluse sembrano molto incoraggianti per l’applicazione del metodo della cattura di massa, ripercorrendo anche per questa specie quanto già fatto per il rodilegno rosso (Pasqualini et al. 1982; Baronio et al., 1992; Faccoli et al., 1993).

Il presente lavoro ha preso in esame un aspetto necessario per la difesa da questa specie fitofaga, cioè la distribuzione della popolazione di *Z. pyrina* nel frutteto, allo scopo di definire un metodo di campionamento di pratica utilità, attraverso il quale stabilire un valore di soglia di danno necessario per decidere eventuali terapie.

(*) Lavoro accettato il 29 ottobre 1994.
Materiali e Metodi

Tab. 1.- Condizioni sperimentali delle aziende.

<table>
<thead>
<tr>
<th>Azienda</th>
<th>campo</th>
<th>anno</th>
<th>varietà</th>
<th>portainnesto</th>
<th>sesto</th>
<th>età</th>
<th>superfici</th>
<th>piante x fila</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabia</td>
<td></td>
<td>1992-93</td>
<td>Staiman Red</td>
<td>MM106</td>
<td>4 x 2.5</td>
<td>11</td>
<td>3000 m</td>
<td>67</td>
</tr>
<tr>
<td>Paltanella</td>
<td>Terra 1</td>
<td>1992-93</td>
<td>Granny Smith</td>
<td>M9 stand.</td>
<td>4 x 2.5</td>
<td>11</td>
<td>6000 m</td>
<td>98</td>
</tr>
<tr>
<td>Paltanella</td>
<td>Terra 2</td>
<td>1992</td>
<td>Cooper7 sb2</td>
<td>MM106</td>
<td>4 x 1.7</td>
<td>12</td>
<td>6000 m</td>
<td>120</td>
</tr>
<tr>
<td>Paltanella</td>
<td>Terra 6</td>
<td>1992</td>
<td>Cooper7 sb2</td>
<td>MM106</td>
<td>4 x 1.7</td>
<td>12</td>
<td>6000 m</td>
<td>120</td>
</tr>
<tr>
<td>Paltanella</td>
<td>Terra 7</td>
<td>1992-93</td>
<td>Rome Beauty</td>
<td>M9 stand.</td>
<td>4.5 x 2</td>
<td>11</td>
<td>6000 m</td>
<td>120</td>
</tr>
<tr>
<td>Paltanella</td>
<td>Terra 8</td>
<td>1993</td>
<td>Cooper7 sb2</td>
<td>MM106</td>
<td>4 x 1.7</td>
<td>12</td>
<td>6000 m</td>
<td>120</td>
</tr>
</tbody>
</table>

Il metodo di campionamento adottato è stato quello visivo controllando, da terra, i getti colpiti da Z. pyrina. Si è quindi considerata come unità di campionamento l’intera pianta, uniformandosi così con il metodo raccomandato nell’ambito del Progetto di produzioni integrate dell’Emilia-Romagna. L’imprecisione insita nel controllo di tutta la pianta da terra è stata considerata accettabile. Inoltre l’impiego di scale o altri mezzi per attuare il campionamento con una maggiore precisione nella parte alta dell’albero è improponibile, da un punto di vista pratico, per l’eccessivo dispendio di tempo.

Per verificare la variazione dell’infestazione in funzione dell’altezza le piante sono state divise in due zone: bassa, comprendente la porzione di albero fino a 1,80 m da terra (area normalmente interessata dai campionamenti visivi da terra) e alta, comprendente la restante parte. Lo scopo di questa operazione era quello di verificare se fosse possibile campionare solo la parte bassa delle piante con evidenti vantaggi nei tempi di esecuzione e di aumento di precisione.

Per avere una indicazione sulla distribuzione spaziale dell’infestazione si sono campionate tutte le piante di ciascun appezzamento, tenendo conto della loro posizione, allo scopo di verificare se le zone del frutteto più infestate rimanesse no le stesse negli anni. Per ogni pianta quindi i dati a disposizione erano riferiti alla loro posizione nel frutteto ed al numero di getti colpiti.

I campionamenti sono stati eseguiti nel momento corrispondente alla massima
presenza di getti infestati nel frutteto. A questo scopo sono state compiute visite periodiche degli appezzamenti che hanno permesso di individuare nella fine di luglio e nella prima decade di agosto i due momenti più idonei per i rilievi. Il campionamento dello stesso appezzamento non si è mai protratto complessivamente oltre i due giorni e quello di tutti i frutteti è stato eseguito nell’arco di circa una settimana per evitare che le variazioni dell’infestazione nel tempo potessero avere influenza sui dati ottenuti. La raccolta dei dati è stata di tipo enumerativo, realizzata campionando un numero fisso di unità per appezzamento (piane). Per compiere questa operazione si è dovuta operare una sola scelta (quella appunto della pianta), rimanendo, quindi, nell’ambito del campionamento a uno studio.

Per quanto riguarda l’adattamento delle distribuzioni osservate a quelle attese si è fatto ricorso alle distribuzioni normale, di Poisson ed infine binomiale negativa, utilizzando il test χ² (chi-quadrato). Per il calcolo del K della binomiale negativa si è fatto ricorso al terzo metodo proposto da Bliss e Fisher (1953) che risulta essere il più esatto. Per il calcolo del K, comune a tutti gli appezzamenti, è stato adottato il metodo proposto da Bliss e Owen (1958).

Un secondo approccio per lo studio della distribuzione spaziale dell’insetto è stato realizzato mediante l’applicazione della legge di Taylor (1961), che lega varianza (s²) e media (m) campionarie secondo la relazione:

\[\log(s^2) = \log(a) + b \log(m), \]

dove l’intercetta (a) è un parametro dipendente essenzialmente dal metodo di campionamento, il coefficiente angolare (b) è definito come indice di aggregazione ed è una costante per ogni specie; quest’ultimo varia in modo continuo passando da una distribuzione regolare (b → 0), ad una casuale (b = 1), ad una aggregata (b > 1).

Per la relazione tra la proporzione di piante colpite e la media di getti infestati per pianta è stata impiegata la formula proposta da Gerrard e Chiang (1970): y = a - log(1-x)², in cui: y = numero di getti infestati a pianta, a e b = parametri della funzione e x = frequenza di piante infestate. Tale tipo di campionamento (binomiale), consente di stimare quindi la media di getti colpiti mediante il semplice conteggio delle piante infestate, con notevole risparmio di tempo e guadagno in praticità.

Le formule per il calcolo della dimensione di campione sono tritate da Karandinasp (1976) in funzione del tipo di distribuzione a cui si adattano i dati; le rispettive formule risultano quindi essere:

\[n = (Z_2/d)^2 (k+x/k x) \] per la binomiale negativa,
\[n = (Z_2/d)^2 q/p \] per la binomiale, e
\[n = (Z_2/d)^2 a x^2 \] per il caso generale calcolando la varianza mediante la legge di Taylor (conteggi numerici),

dove d è il livello di precisione espresso in decimali (0,2-0,3-0,5), Z₂ = 1,96 per n > 30 ed = 0,05 (Karandinasp, 1976), p = probabilità di un successo e q = 1-p.

RIUSITI
Distribuzione spaziale dell’infestazione.

Dall’osservazione in campo in anni consecutivi di tutte le piante dei numerosi appezzamenti si è potuto notare facilmente che la distribuzione dell’infestazione
non è casuale, ma aggregata. Questo è confermato dalla legge di Taylor come mostrato in Fig. I. Il valore di \(b = 1,33 \) conferma il tipo di distribuzione aggregato della popolazione larvale di *Z. pyrina*, infatti in tutti gli appezzamenti esistono delle porzioni di frutteto in cui il numero di getti colpiti è più elevato. La distribuzione aggregata, che in natura è il tipo di distribuzione più frequente, potrebbe essere spiegata, in questo caso, dalla eterogeneità ambientale e dalla maggiore influenza della crescita numerica delle popolazioni sui processi casuali di movimento e mortalità. Fra questi fattori è predominante, per *Z. pyrina*, il fatto che la deposizione delle uova da parte di una femmina avvenga in una parte ristretta di frutteto.

La dimensione e la forma delle aree più infestate non è stata costante né nei diversi appezzamenti né nei diversi anni. Tale andamento evidenzia che non esiste nessuna relazione tra il numero di germogli infestati sulla stessa pianta in due anni consecutivi. Non necessariamente quindi questa specie (così come *C. costus*) predilige piante indebolite da varie cause. Inoltre, dato che la forma e la dimensione delle aree più infestate cambia negli anni all'interno dello stesso appezzamento, o in quello limitrofo mantenendo la caratteristica distribuzione aggregata si può ritenere che gli adulti di *Z. pyrina* non siano dotati di una grande capacità di dispersione.

Distribuzione di frequenza.

Le osservazioni sono state condotte su 9 appezzamenti. In due casi non è stato possibile effettuare il test del \(\chi^2 \) per mancanza di gradi di libertà sufficienti. Nei rimanenti sette casi la binomiale negativa si è adattata ai dati in modo statistica-

![Image](image-url)
mente significativo in sei appezzamenti su sette. In ogni modo anche nei due appezzamenti in cui non è stato possibile calcolare il χ^2 la differenza tra le frequenze osservate e quelle attese è molto piccola. In sostanza quindi in 8 casi su 9 la binomiale negativa è risultata essere in grado di rappresentare le distribuzioni osservate. Come era da prevvedersi, le distribuzioni normale e poissoniana non sono mai risultate in grado di descrivere i dati. In Fig. II viene mostrata la relazione tra media (m) e K nei diversi frutti indagati. Si può notare chiaramente che i valori dei coefficienti K aumentano all'aumentare di m, come già rilevato da altri Autori (Ascombe, 1949; Bliss e Owens, 1958; Waters e Hansen, 1959). Il K_c (K comune) calcolato secondo Bliss e Owens (1958) è risultato pari a 0.2358 ed il calcolo dell'efficienza mostrato in Tab. 2 autorizza a considerare un K_c comune. Il valore di K_c è infatti efficiente quando il valore di F della prima riga è significativo e quello della seconda non lo è (Bliss e Owens, 1958).

![Diagram](image)

Fig. II.- Andamento del parametro K della binomiale negativa al variare delle media.

Calcolo della dimensione ottimale del campione.

L'andamento della dimensione del campione calcolata secondo il modello binomiale (pianta colpita o sana) per $d = 0.5$ è illustrata in Fig. III. Campioni così dimensionati si prestano bene ad essere utilizzati in campo per verificare il livello di infestazione e rapportarlo alla soglia di intervento che è attualmente fissata in 10% di piante colpite (Canestrale et al., 1991). Si riportano (Fig. IV) anche le curve relative alla dimensione ottimale del campione in funzione del numero di getti infestati, calcolate mediante la distribuzione binomiale negativa e secondo la legge di Taylor. Poiché con quest'ultima non si è obbligati a tenere conto della distribuzione dei dati riteniamo che il campione sia più generalizzabile e affidabile. Un grado di precisione pari a $d = 0.5$ (livello d'errore del 25%) viene infatti in genere consigliato per campionamenti finalizzati ad un'assistenza tecnica.
Tab. 2.- Verifica dell’efficienza del K comune a tutte le distribuzioni degli appezzamenti.

<table>
<thead>
<tr>
<th>Azienda</th>
<th>b</th>
<th>P</th>
<th>R-quadrato %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabia 1992</td>
<td>0.549</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>Fabia 1993</td>
<td>0.368</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Paltabolla Terra 1-1992</td>
<td>0.495</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Paltabolla Terra 1-1993</td>
<td>0.803</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>Paltabolla Terra 2-1993</td>
<td>0.336</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Paltabolla Terra 6-1993</td>
<td>0.07</td>
<td>0.1558</td>
<td>0</td>
</tr>
<tr>
<td>Paltabolla Terra 7-1992</td>
<td>0.39</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Paltabolla Terra 7-1993</td>
<td>0.549</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Paltabolla Terra 8-1993</td>
<td>0.748</td>
<td>0</td>
<td>44</td>
</tr>
</tbody>
</table>

Fig. III.- Curva della dimensione del campione in funzione della % di piante colpite (d = 0.5; a = 0.05).

Verifica dell’infestazione della parte alta e bassa della pianta.

La differenza tra l’infestazione riscontrata nella parte alta e in quella bassa delle piante è illustrata nella Tab. 3.

Trattandosi di distribuzioni binomiali negative per la verifica della significatività delle differenze si è preferito fare ricorso a un test non parametrico (test di Wilcoxon o signed-rank test). Dall’analisi delle medie risulta che in 7 casi su 9 l’infestazione media è più elevata nella parte alta delle piante anche se il rapporto tra le medie delle due posizioni non è costante nei vari campi. Inoltre le differenze sono risultate significative in 6 casi. In Tab. 4 sono invece riportati i coefficienti angolari delle rette di regressione, relative a ciascun appezzamento, tra il numero di germogli infestati osservati nella parte bassa e nella parte alta delle piante. Il modello impiegato è stato:
n. germogli alto = a + b*n. germogli basso

I calcoli sono stati eseguiti sui dati originali ed essendo la distribuzione binomiale negativa risulta violato l'assunto della normalità della distribuzione. Tenuto conto di tale considerazione si può osservare che i coefficienti angolari (b) hanno valori relativamente piccoli nonostante siano piuttosto simili e significativi. Inoltre i valori di R² sono compresi fra un minimo del 5% e un massimo del 50%, spiegando quindi solo una piccola parte della variabilità dei dati.

Verifica della soglia.

Come già detto la soglia attualmente adottata è del 10% di piante colpite. Tale valore però non è stato frutto di ricerche scientifiche, ma è stato stabilito in base

<table>
<thead>
<tr>
<th>Azienda</th>
<th>Tesi</th>
<th>z</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabia 1992</td>
<td>Alto</td>
<td>2,27</td>
<td></td>
</tr>
<tr>
<td>Fabia 1993</td>
<td>Basso</td>
<td>1,75</td>
<td></td>
</tr>
<tr>
<td>Paltabell Terra 1-1992</td>
<td>Alto</td>
<td>0,93</td>
<td>4,21</td>
</tr>
<tr>
<td>Paltabell Terra 1-1993</td>
<td>Basso</td>
<td>0,62</td>
<td>2,3</td>
</tr>
<tr>
<td>Paltabell Terra 1-1993</td>
<td>Alto</td>
<td>1,58</td>
<td>1,1</td>
</tr>
<tr>
<td>Paltabell Terra 2-1993</td>
<td>Basso</td>
<td>1,1</td>
<td>7,11</td>
</tr>
<tr>
<td>Paltabell Terra 2-1993</td>
<td>Alto</td>
<td>0,12</td>
<td>0,57</td>
</tr>
<tr>
<td>Paltabell Terra 3-1993</td>
<td>Basso</td>
<td>0,13</td>
<td>0,84</td>
</tr>
<tr>
<td>Paltabell Terra 3-1993</td>
<td>Alto</td>
<td>0,03</td>
<td>1,67</td>
</tr>
<tr>
<td>Paltabell Terra 4-1993</td>
<td>Basso</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Paltabell Terra 5-1993</td>
<td>Alto</td>
<td>0,13</td>
<td>2,33</td>
</tr>
<tr>
<td>Paltabell Terra 6-1993</td>
<td>Basso</td>
<td>0,01</td>
<td>3,86</td>
</tr>
<tr>
<td>Paltabell Terra 7-1993</td>
<td>Alto</td>
<td>0,18</td>
<td>4,82</td>
</tr>
<tr>
<td>Paltabell Terra 7-1993</td>
<td>Basso</td>
<td>0,09</td>
<td>0,01</td>
</tr>
</tbody>
</table>

Tab. 3: Numero medio di getti infestati (z, p = parametri e probabilità contraria del test di Wilcoxon).
Tab. 4.- Coefficienti angolari delle rette di regressione.

<table>
<thead>
<tr>
<th>Effetti principali</th>
<th>GL</th>
<th>Devianza</th>
<th>Varianza</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>pendenza di $1/Kc$</td>
<td>1</td>
<td>196.7856</td>
<td>196.7856</td>
<td>8.6571</td>
</tr>
<tr>
<td>curva di regressione errore</td>
<td>1</td>
<td>1.7503</td>
<td>1.7503</td>
<td>0.077</td>
</tr>
<tr>
<td>errore</td>
<td>6</td>
<td>136.3971</td>
<td>227.312</td>
<td></td>
</tr>
</tbody>
</table>

all’esperienza. La soglia è stata indicata come percentuale di piante colpite perché tale parametro è velocemente rilevabile in campo. È ovvio però che per valutare una soglia sarebbe meglio disporre di un parametro più preciso che permettesse di definire con maggiore precisione la presenza e la dannosità del fitofago nel frutto. Il numero di germogli infestati a pianta risponde senz’altro a queste esigenze, quindi è importante disporre di una relazione tra questo parametro e la proporzione di piante colpite (Fig. V). Come si vede l’adattamento della curva ai dati osservati è eccellente. Si può notare che al 10% di piante colpite corrisponde in media un germoglio ogni 5 piante, mentre al 20% corrisponde un germoglio infestato ogni 2,5 piante. Ad una prima analisi il livello di infestazione corrispondente alla soglia può sembrare molto basso, ma va rapportato alla pericolosità dell’insetto, alla sua capacità di incremento da un anno all’altro e soprattutto alla carenza di mezzi tecnici efficaci al suo contenimento.

CONCLUSIONI

L’indagine ha consentito di conoscere alcune caratteristiche delle infestazioni
larvali di *Z. pyrina* utili per fornire indicazioni e suggerimenti per migliorare le tecniche di campionamento. Per definire un metodo di campionamento ottimale è stato necessario, innanzitutto, studiare la distribuzione dell’infestazione di *Z. pyrina*, sulla pianta (alto e basso) e tra le piante, all’interno dei diversi appezzamenti scelti. Per quanto riguarda la prima caratteristica si è rilevato che generalmente l’infestazione nella parte alta delle piante è superiore a quella della parte bassa, ma che non esiste una relazione abbastanza stretta tra le due. Questo ha ovviamente conseguenze immediate sulla tecnica di campionamento, poiché non è possibile fare riferimento alla sola parte bassa della pianta, con conseguente notevole risparmio di tempo, se non a costo di un aumento inaccettabile dell’imprecisione della stima. L’unità campione per la stima delle popolazioni di *Z. pyrina* è quindi l’intera pianta.

Per quanto riguarda la distribuzione dell’infestazione tra le piante è stata data una valutazione mediante tre metodi diversi: utilizzando le mappe dei frutti, mediante le distribuzioni di frequenza e con l’impiego della legge di Taylor. Da tutti i tre metodi risulta che le popolazioni di *Z. pyrina* sono distribuite in modo aggregato. Il grado di aggregazione varia ovviamente con il grado di infestazione, tendendo a diventare più omogenea all’aumentare di quest’ultima. Inoltre si è notata una mutevolezza della posizione delle aree più infestate sia nello spazio che nel tempo, mentre si è potuto constatare che i livelli di infestazione variano notevolmente nei diversi appezzamenti, anche se contigui. Applicando queste osservazioni alla definizione della tecnica di campionamento si giunge alla conclusione che quest’ultimo va ripetuto per ogni appezzamento o porzione omogenea di frutteto, in quanto le caratteristiche agronomiche e colturali delle piante influenzano in maniera evidente l’infestazione.

Inoltre una conseguenza della distribuzione di tipo aggregato è che la scelta delle piante da campionare deve essere fatta con estrema cura. Infatti, fatto salvo il principio della casualità del campionamento, le piante andranno scelte in tutte le parti del frutteto, poiché limitarsi solo ad alcune aree (come per esempio solo ad alcune file) aumenta di molto il margine di errore. La mutevolezza nello spazio e nel tempo delle zone più infestate implica che l’operazione volta ad individuare dei focolai di infestazione deve essere ripetuta tutti gli anni.

Le considerazioni sopra esposte valgono a prescindere dallo scopo del campionamento, mentre la definizione del numero di piante da campionare ne è strettamente connessa.

Se l’obiettivo è uno studio scientifico è abbastanza difficile stabilire quali parametri di precisione siano accettabili perché questi possono variare notevolmente con le finalità dello studio e con il materiale biologico a disposizione. Comunque per imprecisioni del 20-30% e per infestazioni dell’ordine di un germoglio colpito a pianta si dovranno campionare 200-400 piante. Si tratta di numeri elevati anche per lavori di ricerca. L’unica strada praticabile per ridurre il lavoro, ritenendo di non poter superare una imprecisione del 30%, è quella di scegliere frutti con infestazioni molto elevate che oltretutto garantiscono una maggiore omogeneità dell’infestazione.

Per lo scopo prefissato, cioè poter disporre di un metodo di valutazione delle popolazioni di *Z. pyrina* semplice e sufficientemente preciso, il parametro rileva-
to può essere quello della percentuale di piante colpite. In questo caso si ritiene accettabile un'imprecisione di oltre il 50% (50-80), considerato fra l'altro che questa specie non attacca direttamente la produzione, e quindi eventuali decisioni erronee non hanno immediate e gravi ripercussioni economiche. Secondo questa indicazione il campione dovrà essere composto da un minimo di 55 a un massimo di 140 piante. Si tratta anche in questo caso di valori abbastanza elevati. Attualmente il campione raccomandato all'interno del Progetto Regionale di Produzioni integrate è di 20 piante per ettaro al quale corrisponde un grado di precisione del 130%. Appare ovvio quindi che se si vuole dare un giudizio sulla pericolosità delle infestazioni con un grado di precisione accettabile bisogna fare ricorso a un campione di dimensioni superiori. Il maggior dispendio di tempo che ne deriva può essere ritenuto accettabile, poiché le operazioni di campionamento non sono certo di routine, ma eseguite solo alcune volte l'anno.

Impiegando la relazione esistente tra il numero di germogli colpiti per pianta e la proporzione di piante colpite, si può ritenere che la soglia attualmente adottata del 10% di piante colpite sia accettabile, soprattutto se si dispone di principi attivi efficaci come recentemente dimostrato.

RIASSUNTO

Nel presente lavoro sono state prese in considerazione le modalità di campionamento di Zeuxis pyrina L. (Lep. Cossidae) e la dimensione minima del campione per valutare l'infestazione in relazione alla precisione voluta. Si è peraltro cercato di: 1) stabilire la distribuzione dell'infestazione di Z. pyrina sulla pianta e tra le piante per mettere a punto la modalità di campionamento; 2) stabilire la relazione che intercorre tra la precisione e la dimensione del campione; 3) verificare la minima dimensione del campione compatibile con le esigenze di precisione richiesta (attualmente la dimensione del campione è fissata empiricamente in 20 piante per ettaro).

L'attività di campionamento è stata l'intera pianta controllando da terra i getti colpiti. Per avere una indicazione sulla distribuzione spaziale dell'infestazione (tra piante ed entro pianta) si sono campionate tutte le piante dell'apprezzamento, tenendo conto anche della loro posizione. Le piante inoltre sono state divise in due zone: bassa (fino a 1,8 m) e alta (oltre 1,8 m). Il campionamento è stato eseguito una sola volta per anno e nel momento di massima presenza di germogli infestati, su un totale di 9 appezzamenti.

Per quanto riguarda la dimensione del campione in relazione alla precisione della stima si è considerato che per campionamenti finalizzati alla ricerca scientifica fosse più adeguato utilizzare come parametro il numero di germogli infestati per pianta, mentre la proporzione di piante colpite è stata indicata per campionamenti finalizzati alla pratica fitosanitaria e per verificare l'attendibilità della soglia attuale. In quest'ultimo caso per il calcolo della dimensione del campione si ricorre al modello binomiale e alla formula che esprime l'accuratezza della stima, in termini probabilistici, come una percentuale di variazione dalla media. Il numero delle piante da campionare dipende in sostanza dalla precisione richiesta nella stima, dall'infestazione media e dalla varianza tra le piante. Dall'analisi dei dati risulta che la dimensione del campione diminuisce all'aumentare dell'infestazione e al diminuire del grado di precisione richiesto.

Dall'analisi visiva delle mappature rappresentanti l'infestazione nei frutti, dalle distribuzioni di frequenza e dallo studio della relazione di Taylor risulta che l'infestazione di Z. pyrina è fortemente aggregata.

Per quanto riguarda invece l'infestazione entro le piante è risultato che, pur essendo tendenzialmente più infestata la parte alta, la relazione esistente tra quest'ultima e quella bassa non è sufficientemente stretta. Tutto ciò ha come conseguenza che la modalità di campionamento deve prevedere l'osservazione di tutta la pianta ed una cura elevata nel rispetto del criterio di casualità nella scelta delle piante, in modo da rappresentare il più possibile l'intero frutto.

La dimensione del campione dipende dall'infestazione e dal grado di precisione desiderato. Il campione attualmente adottato nella lotta integrata (20 piante per ettaro) non è abbastanza alto per
assicurare una sufficiente precisione della stima, mentre la soglia raccomandata (10% di piante infestate) può essere ritenuta accettabile.

SUMMARY

This work took into consideration Zeuzera pyrina L. (Lep. Cossidae) sampling methods and the minimum size of the sample for an assessment of the infestation relative to the desired precision. We therefore attempted to:

1) establish the distribution of the Z. pyrina infestation on and between plants, in order to perfect sampling methods;

2) establish the relationship existing between the precision and the size of the sample;

3) verify the minimum sample size compatible with the precision requirements (the sample size is currently empirically set at 20 plants per hectare).

To gain an idea of the spatial distribution of the infestation (between and on plants), all plants on the plot were sampled, taking into account even their position on the plot. The plants were also divided into two zones: low (up to 1.8 m) and high (over 1.8 m). Sampling was carried out once per year, at the moment in which the number of infested buds reached its peak, on a total of 9 plots of land.

As regards the sample size with relation to the precision of the estimate, we decided that, for samples used in scientific research, the most suitable parameter was the number of infested buds per plant, whilst the proportion of plants affected was used in sampling for plant protection purposes and to verify the reliability of the current threshold. In the latter case, the sample size was calculated using the binomial model and the formula which expresses the accuracy of the estimate in probabilistic terms, as a percentage variation of the mean. The number of plants to be sampled depends, basically, on the degree of precision required in the estimate, on the mean infestation and variance between plants. An analysis of the data reveals that the sample size diminishes with an increase in the infestation and a reduction in the degree of precision required.

A visual analysis of the maps illustrating infestations in fruit orchards, the frequency distributions and the study of Taylor’s report indicate that the Z. pyrina infestation is highly concentrated.

In contrast, as regards infestation on the plants, although the higher zone tends to be more infested, the relationship between the latter and the low zone is not close enough. As a result, sampling methods must provide for observation of the whole plant, and extreme care in respecting the criteria of causality in the choice of the plants, so that, as far as possible, the entire fruit orchard is represented.

The sample size depends on the infestation and on the degree of precision required. The sample currently adopted in integrated protection (20 plants per hectare) is not large enough to guarantee sufficient estimate precision, whilst the recommended threshold (10% of infested plants) may be considered acceptable.

BIBLIOGRAFIA CITATA

