Primi dati sulla tossicologia dell'alveare in Romagna.

INTRODUZIONE

Le funzioni biologiche determinanti svolte dall'ape nell'impollinazione di numerosissime specie vegetali, sia spontanee che coltivate, hanno assunto negli ultimi anni una importanza maggiore rispetto al passato. Infatti, se da un lato, il diffondersi della moderna agricoltura (monocoltura, impiego di cultivar autosteri, di colture da seme e di colture proteiche), necessità di una più intensa attività impollinatrice, dall'altro, la rarefazione di molte specie di prunibi selvatici (Bombi, Ditteri Sirfidi, ecc...), dovuta sia alla modificazione dell'ambiente agricolo, che all'uso indiscriminato dei pesticidi, fanno ricadere il successo produttivo di molte colture, interamente o quasi, sulla sola attività dell'ape. A riprova, ricordiamo come la moderna frutticoltura si avvalga ormai da anni della collaborazione di veri e propri « Servizi di impollinazione », nati dalla collaborazione tra frutticoltori e apicoltori, che trasportano, nei periodi di antesi, i loro alveari nei frutteti (Girotti, 1981).

Per le caratteristiche biologiche di questo insetto e per il rapporto molto stretto che viene a crearsi tra l'ambiente nel quale è collocato l'alveare (campo coltivato, frutteto, prato spontaneo, bosco, ecc.), e l'alveare stesso, laddove le moderne tecniche agricole richiedono l'impiego dei pesticidi, sono stati evidenziati da molti anni gravi danni alle api. La bibliografia sugli apicidi provocati in Italia dall'uso sconsiderato degli antiparassitari è ormai molto ricca e non può essere messo in dubbio lo stretto legame causale (Vidano, 1975, 1977, 1979, 1980; Vidano e altri, 1976, 1979; Celli e altri, 1978; Arzone, 1980).

La tossicità che questi prodotti manifestano verso le api bottinarici, provocando la loro morte, non può esaurire, però, la conoscenza dei rapporti tra ape e pesticidi; si devono ampiamente indagare e studiare i riflessi che questi ultimi possono avere sulla tossicologia dell'alveare. Infatti, se venendo a contatto con determinati insetticidi, si ha la morte della bottinarice senza che questa riesca a rientrare all'alveare, altri pesticidi, meno tossici per lei, non le impediscono di svolgere fino in fondo le sue mansioni e le consentono di accumularli dentro l'alveare assieme al polline, al nettare e all'acqua.
Le ripercussioni che si possono avere sulla salubrità dei prodotti dell'alveare — polline, miele, propoli, ecc. — destinati all'alimentazione umana, hanno già indotto vari ricercatori ad effettuare delle prove sperimentali e dei controlli sul miele.

Nella nostra indagine abbiamo voluto allargare il campo di interesse, considerando i riflessi che l'impiego degli antiparassitari avrebbe avuto sulla totalità della vita dell'alveare: mortalità delle bottinatrici, presenza eventuale di residui in larve, polline e miele. Abbiamo inoltre esteso l'arco degli antiparassitari da ricercare anche alla famiglia dei ditiocarbammati, diffusamente impiegato nella zona e caratterizzato da una elevata persistenza e da pericoli ben noti per la salute dell'uomo.

MATERIALE E METODO

La nostra sperimentazione si inserisce nell'ambito di un vasto progetto di ricerca sullo «Stato di Salute del Territorio» promozionato, da quattro anni a questa parte, dalla Amministrazione Provinciale di Forlì e svolto dall'Istituto di Entomologia dell'Università di Bologna.
Uno degli scopi del progetto è appunto quello di delineare un quadro degli effetti sull'alveare dell'impiego di pesticidi in agricoltura. La sperimentazione, di cui ora esporremo i dati, si è svolta nel 1980-'81 nel territorio della Provincia di Forlì. Sono state installate cinque stazioni sperimentali di rilevamento situate in cinque zone a diversa conduzione agricola e quindi a differente gestione fitolatrica (fig. 1):

![Fig. 1](image)

Localizzazione delle stazioni di rilevamento nel territorio.

Ogni stazione era costituita da due alveari con famiglie di api in ottime condizioni, e provenienti tutte dal medesimo apiario. Ad ogni alveare era applicata la cosiddetta gabbia di Gary per la raccolta delle api morte. Infatti, settimanalmente, veniva effettuato il conteggio delle medesime; questo dato deve essere considerato in difetto rispetto al dato reale, perché non comprende il numero delle bottinatrici che, morendo lontano dall'alveare, non potevano ricadere all'interno della gabbia. Gli alveari, costantemente controllati dal punto di vista della
<table>
<thead>
<tr>
<th>Stazione</th>
<th>Ubicazione</th>
<th>Coltivazioni prevalenti nella zona</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pieve Sestina di Cesena</td>
<td>Arborie; pero, melo, pesco con qualche erbacea quale barbabietola da zucchero e grano.</td>
</tr>
<tr>
<td>2</td>
<td>Pieve Sestina di Cesena</td>
<td>Prevalenza di coltivazioni arboree con anche fragole, barbabietola da zucchero e grano.</td>
</tr>
<tr>
<td>3</td>
<td>Pieve Sestina di Cesena</td>
<td>Cavolo da seme, fragole sotto serra e in pieno campo.</td>
</tr>
<tr>
<td>4</td>
<td>S. Giorgio di Cesena</td>
<td>Ortive da seme; carota, cavolo, insalata, erba medica, spinaci, pomodori, ecc.</td>
</tr>
<tr>
<td>5</td>
<td>Calisese di Cesena</td>
<td>Porro da seme; fruttiferi: albicocco, susino, pesco, vite; rieca vegetazione spontanea.</td>
</tr>
</tbody>
</table>

tecnica apistica, sono sempre stati lasciati sul posto, in continuo contatto con tutte le normali pratiche agricole che venivano condotte sulle colture adiacenti. Con una certa periodicità, dottata in parte dal verificarsi di abbondanti morie di bottinatrii, venivano prelevati campioni delle stesse. Tali campioni erano poi sottoposti ad analisi chimica, per il ritrovamento e la determinazione degli eventuali residui di antiparassitari negli ex-Laboratori di Igiene e Profilassi di Rimini e di Forlì (1). Sono stati, inoltre, prelevati anche campioni di larve e di miele direttamente dall'interno dell'alveare, con l'ausilio di piccole pinze e di una siringa. Tali campioni sono stati a loro volta inviati ai laboratori di analisi.

RISULTATI

1) Mortalità.

Una percezione immediata della differente situazione riscontrata nelle cinque stazioni sperimentali, si ha guardando l'andamento delle mortalità nel 1981. Nei grafici seguenti sono riportati, stazione per stazione, i picchi di mortalità registrati durante la stagione di rilevamento (fig. 2, 3, 4, 5, 6).

(1) A questo proposito, si ringraziano per la cortese collaborazione il Dott. Sauro Tiraferrì e il Dott. Franco Scarponi.
<table>
<thead>
<tr>
<th>Stazione</th>
<th>9-4</th>
<th>15-4</th>
<th>22-4</th>
<th>29-4</th>
<th>6-5</th>
<th>8.5</th>
<th>13-5</th>
<th>19-5</th>
<th>30-5</th>
<th>7-6</th>
<th>12-6</th>
<th>19-6</th>
<th>30-6</th>
<th>10-7</th>
<th>17-7</th>
<th>21-7</th>
<th>29-7</th>
<th>7-8</th>
<th>13-8</th>
<th>19-8</th>
<th>17-9</th>
<th>1-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>700</td>
<td>/</td>
<td>4200</td>
<td>200</td>
<td>400</td>
<td>700</td>
<td>878</td>
<td>906</td>
<td>350</td>
<td>750</td>
<td>331</td>
<td>1000</td>
<td>1000</td>
<td>800</td>
<td>500</td>
<td>200</td>
<td>100</td>
<td>110</td>
<td>290</td>
<td>317</td>
<td>200</td>
<td>289</td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
<td>330</td>
<td>430</td>
<td>600</td>
<td>70</td>
<td>350</td>
<td>1000</td>
<td>330</td>
<td>3100</td>
<td>600</td>
<td>510</td>
<td>1700</td>
<td>500</td>
<td>967</td>
<td>330</td>
<td>267</td>
<td>600</td>
<td>80</td>
<td>495</td>
<td>382</td>
<td>300</td>
<td>350</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>/</td>
<td>10</td>
<td>40</td>
<td>/</td>
<td>900</td>
<td>150</td>
<td>472</td>
<td>120</td>
<td>300</td>
<td>600</td>
<td>430</td>
<td>130</td>
<td>600</td>
<td>110</td>
<td>88</td>
<td>290</td>
<td>156</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>/</td>
<td>417</td>
<td>250</td>
<td>/</td>
<td>140</td>
<td>363</td>
<td>900</td>
<td>390</td>
<td>150</td>
<td>640</td>
<td>500</td>
<td>/</td>
<td>700</td>
<td>280</td>
<td>432</td>
<td>200</td>
<td>80</td>
<td>104</td>
<td>480</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>350</td>
<td>300</td>
<td>120</td>
<td>300</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nella tabella 1 le stesse mortalità sono espresse in numeri assoluti. La casella barrata indica che in quella data non è stato fatto il conteggio, mentre la casella vuota indica una mortalità inferiore a 10 api o assenza di mortalità.

Da uno sguardo complessivo ai picchi e dall'andamento delle morta-
Stazione n°2
scala 1:140

FIG. III
Mortalità delle api nella stazione 2.

Stazione n°3
scala 1:140

FIG. IV
Mortalità delle api nella stazione 3.
lità nel tempo, si vede distintamente la differenza significativa tra le quattro stazioni di pianura e quella di collina.

Nelle stazioni 1 e 2, si sono verificati i picchi di mortalità più elevati — 4.200, 3.500 e 3.100 api — con una mortalità media per conteggio elevatissima: 851 api nella stazione 1 e 657 api nella stazione 2. Fatte eccezione per il picco di 4.200, verificatosi nella stazione 1 il 22/4/’81, si nota una notevole somiglianza tra i dati di queste due sta-

Stazione n° 5
scala 1:140

Mortalità delle api nella stazione 5.

zioni, le quali, come si può constatare sulla cartina (fig. 1), si trova- vano nello stesso contesto agricolo.

Sia nella stazione 3 che nella stazione 4, non si è superato il picco di 900 api, con una media di 247 e 359 rispettivamente. Inoltre, in entrambe le stazioni alcuni conteggi (Tab. 1) non hanno evidenziato presenza di api morte.
Per tutte e quattro le stazioni, le mortalità più elevate sono concentrate nei mesi di Aprile, Maggio e Giugno e si registra la presenza contemporanea di un picco molto elevato alla fine di Maggio.

Anche nella stazione 5, situata in collina, la fine di Maggio mostra la presenza di un picco, per l’esattezza del picco più elevato: 350 api (1). Lo scarso numero di api morte, una media di 82, testimonia senza necessità di commento, la notevole differenza con le situazioni analizzate precedentemente, e, di conseguenza, le ripercussioni indotte sul pronubio da una diversa gestione fitoietria.

2) Residui di antiparassitari.

La tabella 2 riassume il numero e la natura dei campioni eseguiti durante la sperimentazione, suddivisi per stazione di rilevamento, con l’indicazione della percentuale di campioni che hanno rivelato la presenza di residui:

<table>
<thead>
<tr>
<th>Stazione</th>
<th>Totali</th>
<th>Api morte</th>
<th>Larve</th>
<th>Miele</th>
<th>Polline</th>
<th>% di campioni contaminati</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>36,36</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td></td>
<td>72,72</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td>93,33</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td>50,00</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>63,33</td>
</tr>
</tbody>
</table>

Su 34 campioni di natura diversa, ben 19 si sono rivelati positivi ed è stata possibile l’individuazione di 25 residui di antiparassitari, 2 dei quali ritrovati solo in piccole tracce (fosforanici).

In figura (7), vengono riportate le quantità e la natura dei singoli

(1) Presumibilmente, tutti questi picchi sono dovuti a un trattamento con Carbaryl sulla vite contro la prima generazione della tignola (Lobesia botrana Schaff.). In questo periodo si ha nella vite il 60-70% di fiori schiusi da cui è noto che l’apa raccoglie polline. Anche in collina c’erano alcuni vigneti contigui alla stazione.
residui con l'indicazione della matrice. Le quantità sono espresse in parti per milione, salvo diversa indicazione.

La ricerca dei vari principi attivi si è indirizzata, principalmente, verso i prodotti che venivano utilizzati dagli agricoltori in corrispondenza dei vari campionamenti e delle mortalità più elevate registrate settimanalmente.

I dati riportati in figura possono essere espressi con le seguenti percentuali, calcolate sul numero totale dei residui trovati:

<table>
<thead>
<tr>
<th>Ditiocarbammati</th>
<th>56%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosfororganici</td>
<td>24%</td>
</tr>
<tr>
<td>Cloroderivati</td>
<td>16%</td>
</tr>
<tr>
<td>Omeotato</td>
<td>4%</td>
</tr>
</tbody>
</table>

Come risulta, elevatissima è la percentuale di residui di ditiocarbammati, e molto elevate sono anche le quantità trovate nei vari campioni; si giunge a fino ben 17 p.p.m. in api adulte morte. Il dato forse più preoccupante, e importante per la nostra indagine tossicologica, è la presenza di queste molecole nel miele, con quantità di 1,64 e 0,57 p.p.m., e nelle larve (1,68, 1,01 e 0,74 p.p.m.). Molto più bassa è la percentuale di residui di fosfororganici, e molto più basse sono anche le quantità riscontrate, nessuna di queste ritrovate nel miele e nelle larve. Ciò
conferma i dati trovati in letteratura riguardo a quest’ultima famiglia di pesticidi, e contribuisce ad affermare che da una parte, insetticidi come i fosforganici, molto tossici per le api e responsabili di forti apicidi, e l’allevamento, non riescono a passare nei prodotti dell’alveare, mentre pesticidi persistenti e poco tossici, vengono accumulati nelle scorte dell’alveare, e vi permangono tanto da essere evidenziati da un’analisi chimica.

Conclusioni

L’ape si rivela un possibile indicatore biologico della pressione da pesticidi del campo coltivato. Essa segnala la presenza di questi pericolosi composti con la sua mortalità (insetticidi), oppure se i composti sono innocui, o poco pericolosi per l’insetto, li denuncia sotto forma di residui, inquinanti del suo corpo, passati alle larve con il cibo, o immagazzinati nel miele e nel polline.

RIASSUNTO

All’interno di un vasto progetto sullo “Stato di Salute del Territorio”, si è cercato di delineare un primo quadro della tossicologia dell’alveare in cinque zone del territorio forlivese a diversa conduzione agricola e, quindi, a differente gestione fitocentrica.

Vengono considerati i riflessi che l’impiego dei pesticidi ha sulla totalità della vita dell’alveare: mortalità delle bottinaturali, presenza eventuale di residui in larve, polline e miele estratti dall’alveare e nelle stesse api morte.

Le mortalità, registrate settimanalmente, hanno toccato punte di 4.200, 3.500 e 3.100 api, delineando una notevole differenza tra le zone di pianura, a coltivazione intensiva, e la collina a vegetazione spontanea.

Le analisi sono state effettuate su 35 campioni di materiale dell’alveare. In questi sono stati evidenziati 25 residui di pesticidi: 56% di residui di ditiocarbammati in campioni di api morte (17.000 - 12.39 - 11.87 p.p.m. le quantità più elevate), di larve (1.08 - 1.01 - 0.74 p.p.m.) e di miele (1.64 e 0.57 p.p.m.), di 24% di residui di fosforganici, tutti in campioni di api morte (1.20 - 0.49 - 0.45 p.p.m.), di un 16% di residui di clororganici (D.D.T.; D.D.E) in campioni di larve e di miele in piccollissime dosi e di un 4% di residui di omeotato in un campione di api morte.

First data on beehive toxicology in Romagna, Italy (1983).

SUMMARY

Five areas with different pest management systems in the Forlì province were investigated to see the rate of beehive toxicology.

Pesticide side effects were tested on forager bee mortality, residues in the larvae, pollen, honey and in the dead bees. Weekly samplings on mortality peaked 4.200 - 3.500 and 3.100 deaths. A big difference was found between areas in the plane (high input farms) and in the natural surroundings of the hills.
Laboratory analyses were made on 35 samples of beehive materials. Inside 25 of these samples, pesticide residue was found: 56% of dithiocarbamates dead bees (17.60 - 12.93 - 11.87 p.p.m. the highest amount), larvae (1.68 - 1.01 - 0.74 p.p.m.) and the honey (1.64 5.07 p.p.m.), 24% of organophosphorus insecticides all of the dead bees (1.29 - 0.49 - 0.45 p.p.m.), 10% of organochlorine insecticide (D.D.T., D.D.E.) of larvae and honey in small doses, 4% of omethoate in only one sample of dead bees.

BIBLIOGRAFIA CITATA

Celli G., Maini S., 1982. — Lotta biologica integrata in agricoltura. CEStAAAT, Roma, 140 pp., 17 tavole a colori (Cfr tav. n. 18 fuori testo: Sopravvivenza dell’ape e uso dei pesticidi, a cura di G. Celli, C. Assenza e C. Burchi).

